深紫外光刻机(深紫外光刻机 duv)

海潮机械 2023-01-25 03:37 编辑:admin 217阅读

1. 深紫外光刻机 duv

最大区别是二者光源波长不同。

光刻机duv和euv最大区别是二者光源波长不同,duv光源为深紫外光,波长193纳米,euv光源为极紫外光,波长13.5纳米。duv光源是汞灯光源,euv是激光轰击锡滴微粒产生的。再者就是euv的各零件组的精度更高,价格也更贵。

2. 深紫外光刻机气体

么是黄光区?简单来讲,黄光区是指TFT工厂或者半导体工厂中的光刻区。包含光刻胶涂布、曝光、显影及刻蚀工序

黄光制程为啥不叫红灯区?绿灯区?

因为此区域的照明采用黄色光源,远远望去一片金黄··· ···

为啥要使用黄光而不是其他颜色的光源照明?

在半导体工业普遍使用的光刻胶,类似于相机的胶片,在遭遇光线照射(特别是紫外线)即有曝光之效果, 因此在显影之前, 都要远离此光源。

因为黄光的波长较长, 不容易使得光刻胶曝光, 因此将黄光作为显影前最理想的照明光源。

3. 深紫外光刻机波长

最高13.5纳米。

西方光刻机目前最顶级是13.5纳米,也就是euv极紫外光光源波长的光刻机,这也是第一代euv光刻机,所以直接就是按光源波长来计算纳米数值。13.5的纳米可以制作22纳米以下制程的芯片,目前量产芯片最高为4纳米,可制造最高制程为3纳米。

4. 深紫外光刻机原理

简单来说EUV是UV紫外线中波段处于(10nm~100nm)的短波紫外线。而在光刻机工艺中通常定义在10 ~ 15 nm紫外线。

光刻的原理是在已经切割好的晶圆(通常是多晶硅)上覆盖一层具有高度光敏感性光刻胶,再用紫外线如深紫外光(DUV)、极紫外光(EUV)透过掩模照射在晶圆表面,被紫外线照射到的光刻胶会发生反应。

5. 深紫外光刻机的掩模版

掩膜版是制作掩膜图形的理想感光性空白板,通过曝光过程,这些图形的信息将被传递到芯片上,用来制造芯片

材质:石英玻璃、金属铬和感光胶,该产品是由石英玻璃作为衬底,在其上面镀上一层金属铬和感光胶,成为一种感光材料,把已设计好的电路图形通过电子激光设备曝光在感光胶上,被曝光的区域会被显影出来,在金属铬上形成电路图形,成为类似曝光后的底片的光掩模版,然后应用于对集成电路进行投影定位,通过集成电路光刻机对所投影的电路进行光蚀刻,其生产加工工序为:曝光,显影,去感光胶,最后应用于光蚀刻

6. 深紫外光刻机 国产

      光刻机是法国人Nicephore niepce(尼埃普斯)发明的,起初是Nicephore niepce发现了一种能够刻在油纸上的印痕,当其出现在了玻璃片上后,经过一段时间的暴晒,透光的部分就会变得很硬,但是在不透光的部分可以用松香和植物油将其洗掉。

         光刻机(lithography)又名:掩模对准曝光机,曝光系统,光刻系统等,是制造芯片的核心装备。它采用类似照片冲印的技术,把掩膜版上的精细图形通过光线的曝光印制到硅片上。光刻机的主要性能指标有:支持基片的尺寸范围,分辨率、对准精度、曝光方式、光源波长、光强均匀性、生产效率等。分辨率是对光刻工艺加工可以达到的最细线条精度的一种描述方式。光刻的分辨率受受光源衍射的限制,所以与光源、光刻系统、光刻胶和工艺等各方面的限制。对准精度是在多层曝光时层间图案的定位精度。曝光方式分为接触接近式、投影式和直写式。曝光光源波长分为紫外、深紫外和极紫外区域,光源有汞灯,准分子激光器等。

7. 中科院研发成功2nm光刻机

是真的,中科院研发的叫做叠层垂直纳米环栅晶体管,可以用于2纳米以下工艺。不过,这只是一种晶体管结构,距离实际应用还有很长的距离。

我们知道,半导体芯片发挥作用的就是晶体管。芯片的的技术水平,一般也要看每平方毫米多少晶体管。例如,Intel的芯片,10纳米技术节点,晶体管密度达到了1亿个晶体管,基本与三星的7纳米工艺相当,比台积电的7纳米芯片还要高一点。

晶体管也是多种多样的,以适应不同的无需求。每一种结构,各有特点,对芯片性能影响很大。例如,Intel的芯片广泛使用的FinFET工艺,采用的是鳍式晶体管,这个技术已经被广泛应用,在22、16、12、7等工艺节点上应用广泛。各大厂商基本都用这个设计,我国中芯国际,在14纳米工艺上开始使用这一技术。

但是,半导体发展到5nm、3nm节点,原有的鳍式晶体管已经不能满足需求了,就需要研发新型晶体管,来代替以前的设计方案。这些设计方案中,最有希望的GAA环绕栅极晶体管。据说,三星公司就计划在3纳米技术节点使用GAA环绕栅极晶体管。而第一家使用鳍式晶体管的企业Intel在5纳米就转向GAA技术。而台积电,也要在3纳米或者2纳米节点转向GAA技术。

具体到中国,就遇到麻烦了,美国已经严令GAA环绕栅极晶体管技术不得向中国提供。那么,中国势必要研发自己的技术应对。基本来说,中国是两条腿走路,一方面,自己研发GAA 技术,我国的复旦大学就已经进行了验证,已经可以发展出自己的技术。另一方面,研发自己的新型晶体管结构,这就是中科院研发的新型垂直纳米环栅晶体管,它被视为2nm及以下工艺的主要技术候选。

技术储备有了,但是实现技术也是个难题,中国目前没有极紫外光刻机,哪怕技术有了储备,也要等制造设备到位,这是个漫长的过程。

中科院攻克2nm芯片关键技术这件事是真的。

不过不用过于高兴,因为该技术只是制造芯片众多环节中的一个关键技术,严格来说它属于芯片设计的范畴。不是说攻克了该关键技术很快就能制造出2nm芯片。相反,我国离制造出2nm芯片还很遥远,还有很多难关要攻克,比如制造2nm芯片所需的光刻机丶光刻胶丶离子注入设备等等。

中科院攻克的2nm芯片关键技术是指成功研发出了新型垂直纳米珊晶体管。这种新型晶体管被视为2nm及以下工艺的主要技术候选。该技术比之前三星宣布的3nm工艺需要采用的GAA环绕珊极晶体管性能更强,功耗更低。

该技术的诞生说明我国的芯片设计能力己处于世界前列,跟世界顶尖国家基本上属于同一个水平。

哎!看到标题很兴奋,详细了解后,难免还是有些失望!该技术就象你得到了宫庭秘传胡辣汤中那几片牛肉的做法秘诀,但是,汤中放什么料以及配比的秘方还没有,做胡辣汤的锅丶碗丶勺丶瓢丶盆也没有,只能吧哒吧哒嘴,把快流出的口水咽了。

不过,随着国家的大力支持,一个个象这样的技术被攻克,我们总是离制造出高制程的芯片更近一步。