1. 无掩模光刻机原理
光刻机(Mask Aligner) 又名:掩模对准曝光机,曝光系统,光刻系统等,是制造芯片的核心装备。它采用类似照片冲印的技术,把掩膜版上的精细图形通过光线的曝光印制到硅片上。
一、用途
光刻机是芯片制造的核心设备之一,按照用途可以分为好几种:有用于生产芯片的光刻机;有用于封装的光刻机;还有用于LED制造领域的投影光刻机。
用于生产芯片的光刻机是中国在半导体设备制造上最大的短板,国内晶圆厂所需的高端光刻机完全依赖进口,本次厦门企业从荷兰进口的光刻机就是用于芯片生产的设备。
二、工作原理
在加工芯片的过程中,光刻机通过一系列的光源能量、形状控制手段,将光束透射过画着线路图的掩模,经物镜补偿各种光学误差,将线路图成比例缩小后映射到硅片上,然后使用化学方法显影,得到刻在硅片上的电路图。
一般的光刻工艺要经历硅片表面清洗烘干、涂底、旋涂光刻胶、软烘、对准曝光、后烘、显影、硬烘、激光刻蚀等工序。经过一次光刻的芯片可以继续涂胶、曝光。越复杂的芯片,线路图的层数越多,也需要更精密的曝光控制过程。
2. 无掩模板光刻
比较好。
成都路维光电有限公司办公室地址位于有着3000余年的建城史,故有“锦官城”之称的成都,成都 成都高新区(西区)天勤路839号5栋,于2017年06月06日在高新工商局注册成立,注册资本为24500万人民币,在公司发展壮大的2年里,我们始终为客户提供好的产品和技术支持、健全的售后服务,我公司主要经营生产光刻掩模板;电子产品、计算机软硬件技术开发;货物及技术进出口。(依法须经批准的项目、经相关部门批准后方可开展经营活动)。
3. 光刻机掩膜台工作原理
虽然通过浸没式技术和多重光刻技术等,采用ArF光源的光刻机可以满足7nm节点工艺要求,但是在实际应用中仍然面临巨大挑战,首先就是光刻机使用的超纯水中可能含有影响晶圆表面而形成缺陷的颗粒物,同时水泡会分散曝光所用的光,歪曲空中的影像而在晶圆的光阻层中形成气泡缺陷。同时为了满足先进工艺要求,浸没式光刻机采用了双重光刻技术、多重光刻技术和自对准双重成像技术等技术,这样的结果是工艺成本上升和良率的下降,而这对晶圆厂、设计公司都是不利的。
EUV光刻机的优点及核心技术
EUV光刻机的引入让总体工艺成本降低了12%,工艺过程的简化促进良率提升9%,同时更好的成像性能导致集成电路性能比采用浸没式光刻机的更加优异。当然目前EUV光刻机的产出率要低于浸没式光刻机,ASML的NXE3300B、3400B的产出率为125片/小时,而浸没式光刻机NXT2000i和NXT2050i的产出率为275片/小时和295片/小时,差距仍然明显。
EUV光刻机主要有物镜、掩模台、工件台、光源、照明等组成,相比193nm的ArF光,几乎所有的光学材料对13.5nm的极紫外光都有很强的吸收,就连空气都能吸收EUV,到达光刻胶时光能量损失超过95%,因此EUV光刻机的光学系统采用全反射式曝光系统,这也是EUV光刻机的核心技术:
当然EUV光刻机还涉及其他关键技术。在架构设计方面,要做到与光学光刻机共用平台,针对真空腔与全反射式曝光系统开展系统设计;在高真空环境下还要研究密封性设计,材料方面还要考虑抑制释放气体以及相应的污染控制。
EUV的反射镜表面镀有Mo/Si多层膜,其中Mo层厚度为2.8nm,Si层厚度为4.1nm,一个Mo/Si的厚度为6.9nm,在多层膜表面镀有一层2-3nm的Ru保护膜。在Mo/Si膜的表面镀一层Ru膜的目的是可以有效延缓Mo/Si的氧化,降低C在表面沉积的速率。
实际上在EUV光学系统环境中水分子和碳氢化合物是导致反射镜表面反射率降低的主要原因。这些水分子和碳氢化合物可能来源是材料表明的放气、泄漏和真空系统自身。在高能量EUV光照下水分子会氧化Mo/Si,碳氢化合物会分解,在反射镜表面沉积一层碳膜。数据显示反射镜表面沉积0.3nm的氧化层便会导致约1%的反射率损失。
当然目前业界也在研究其他多层膜以便进一步提高反射率,比如在Mo/Si层中加入Rh、Sr等材料;对每一层材料厚度做优化以及使用B4C作为保护层等。
EUV光刻机的光路设计及曝光系统
EUV光刻机的曝光系统设计成一系列反射镜,光路的路径如下:光源发出的13.5nm的光被收集后通过几个反射镜形成所需要的光照方式并照射在掩模上。掩模同样设计成反射式的,从掩模反射出的光包含了掩模上的图形信息,这些带有信息的光通过另一组反射镜投影在晶圆上实现曝光:
在EUV光刻机中通过使用6个反射镜实现了0.33 的数值孔径,但若要提升数值孔径就需要增加更多的反射镜,比如将反射镜增加到8个便可将数值孔径提升到0.5。另外通过增加非球面度可进一步提高成像质量,减少波前误差;通过降低面型粗糙度可降低杂散光,提高对比度等:
ASML第二代EUV光刻机有望将数值孔径提升到0.5以上,该机型计划于2024年量产。
不过有一个新的问题是由于使用的反射镜中心有孔,这样带来的问题是曝光视场的缩小,导致达不到26mm*33mm的曝光区域,而目前26mm*33mm在深紫外和极紫外为统一的视场标准。
EUV光源的结构及输出功率
目前EUV光刻机的光源有两种:用放电产生的等离子体发射EUV光子的DPP技术以及用激光激发的等离子体来发射EUV光子的LPP技术,这两个技术的共同点是先激发产生20-50eV的等离子体,等离子体再辐射出EUV光子。不过LPP因为比较容易实现输出功率的提升,虽然结构复杂,造价较高,但仍然成为主要的光源收集方式。
EUV的LPP光源系统的结构,由驱动激光器、光束传递系统和EUV腔系统三部分组成。驱动激光系统包含CO2激光器和预脉冲激光器,其中CO2激光器是一套主振功率放大(MOPA)系统,该主振荡器包含多个量子级联激光器,一套再生放大器,和一套基于射频放电激发、平板波导和多程放大器的后置放大系统:
预脉冲激光和CO2激光束在光束传输系统中被混合起来,并通过EUV腔系统中的对焦单元导入到等离子体态的锡液滴上。锡等离子体产生的EUV光束被收集镜收集起来,并导入到曝光系统中。超导磁场系统位于EUV腔外部,并能在EUV腔内产生高强度的磁场,从而保护收集器镜面不受锡等离子体产生的高速锡离子的影响。此外,该系统配备有若干套射击控制回路,如液滴定位控制、激光光束轴、定时控制器,以确保液滴和激光器间能拥有μm至nm量级的射击精度。
在DPP技术中注入的材料如Sn或Xe在电场作用下生成等离子体,然后磁场对其进一步压缩使之达到高温、高密度并产生EUV辐射。当然在LPP技术中是用激光激发方式产生EUV辐射。
目前光刻机主要用Sn来激发EUV光子,主要的原因是Xe的转换效率不到1%,绝大多数输入能量变成热能,因此效率太低,而且光源散热不容易解决。
衡量EUV光源的重要性能指标为转换效率和输出功率,其中转换效率为13.5nm附近2%带宽内输出的能量占总输入能量的百分比;输出功率则是在中间汇聚点测得的功率:
光刻机光源输出功率和光刻胶敏感度是决定光刻机产能的主要因素,曝光功率越大、光刻胶越敏感,晶圆曝光所需要的时间就越短,产出率越高。
目前提高EUV光源输出功率的方法主要在四个方面:第一是增加激光器的激发功率,包括增加激光器功率放大的能力和提高脉冲频率;第二是提高转换效率;第三是提高对发光的控制,包括提高激光与Sn滴之间的稳定性和Sn滴的动量;第四是提高收集系统使用寿命。
4. 无掩膜光刻技术
掩膜版的功能类似于传统照相机的“底片”,其工作原理如下:根据客户所需要的 图形,掩膜版厂商通过光刻制版工艺,将微米级和纳米级的精细图案刻制于掩膜版基板 上,掩膜版的原材料掩膜版基板是制作微细光掩膜图形的感光空白板,再将不需要的金 属层和胶层洗去,即得到掩膜版产成品。
掩膜版对下游行业生产线的作用主要体现为利 用掩膜版上已设计好的图案,通过透光与非透光的方式进行图像(路图形)复制,从而 实现批量生产。
5. 光刻机掩模板
在薄膜、塑料或玻璃基体材料上制作各种功能图形并精确定位,以便用于光致抗蚀剂涂层选择性曝光的一种结构,称为光刻掩模版。 半导体集成电路制作过程通常需要经过多次光刻工艺,在半导体晶体表面的介质层上开凿各种掺杂窗口、电极接触孔或在导电层上刻蚀金属互连图形。
光刻工艺需要一整套(几块多至十几块)相互间能精确套准的、具有特定几何图形的光复印掩蔽模版。
6. 数字掩模光刻机
无掩膜光刻是一类不采用光刻掩膜版的光刻技术,即采用电子束直接在硅片上制作出需要的图形。无掩膜光刻可与光学光刻相比拟的新技术。无掩膜光刻其具备分辨率高、成本较低等优势,但也存在着生产效率低、电子束之间的干扰易造成邻近效应等缺陷。
7. 光刻机光刻原理
一、用途
光刻机是芯片制造的核心设备之一,按照用途可以分为好几种:有用于生产芯片的光刻机;有用于封装的光刻机;还有用于LED制造领域的投影光刻机。
用于生产芯片的光刻机是中国在半导体设备制造上最大的短板,国内晶圆厂所需的高端光刻机完全依赖进口,本次厦门企业从荷兰进口的光刻机就是用于芯片生产的设备。
二、工作原理
在加工芯片的过程中,光刻机通过一系列的光源能量、形状控制手段,将光束透射过画着线路图的掩模,经物镜补偿各种光学误差,将线路图成比例缩小后映射到硅片上,然后使用化学方法显影,得到刻在硅片上的电路图。
一般的光刻工艺要经历硅片表面清洗烘干、涂底、旋涂光刻胶、软烘、对准曝光、后烘、显影、硬烘、激光刻蚀等工序。经过一次光刻的芯片可以继续涂胶、曝光。越复杂的芯片,线路图的层数越多,也需要更精密的曝光控制过程。