lv50燃气轮机(超级燃气轮机)

海潮机械 2023-01-25 06:00 编辑:admin 292阅读

1. 超级燃气轮机

世界上最大的燃气轮机就是德国西门子SGT5-8000H超级燃气轮机,这个机器重390吨,长13.1米,宽4.9米,高4.9米 ,功率为375MW。

2. 超大型燃气轮机

    燃气轮机5MW状态耗油率390克/千瓦小时,柴油机210克/千瓦小时,一小时消耗4320千克燃油。功率更大的油耗更多。

     但燃气轮机具有结构紧凑体积小、重量轻、功率密度大、热效率高等不可多得的优点,这也就是为什么现代军舰特别是驱逐舰等大型主战舰艇青睐于采用燃气轮机的主要原因。

3. 民用燃气轮机

就业情况良好。

动力与控制类专业就业前景主要为航空、航天、舰船等工业部门培养高级工程技术人才。本专业对应的动力机械及工程学科是国家重点学科,具有硕士、博士学位授予权。

该专业毕业生主要去向包括:航空发动机研制、设计、生产部门,航天发动机研制、设计、生产部门,舰用燃气轮机研制、设计、生产部门及民用燃气轮机研制、生产部门等。

4. 超级燃气轮机工作原理

最简单的燃气轮机装置包括三个主要部件:压气机、燃气轮机和燃烧室。空气和燃料分别经压气机与泵增压后送入燃烧室,在其中燃料与空气混合并燃烧,释放出热能。燃烧所产生的燃气吸热后温度升高,然后流入燃气轮机边膨胀边作功,作功后的气体排向大气并向大气放热。重复上述升压、吸热、膨胀与放热过程,连续不断地将燃料的化学能转换成热能,进而转换成机械能。 这是最简单的,要详细的再给你复制。 以下是详细的: 燃气轮机是以连续流动的气体为工质带动叶轮高速旋转,将燃料的能量转变为有用功的内燃式动力机械,是一种旋转叶轮式热力发动机。

中国在公元十二世纪的南宋高宗年间就已有走马灯的记载,它是涡轮机(透平)的雏形。15世纪末,意大利人列奥纳多·达芬奇设计出烟气转动装置,其原理与走马灯相同。至17世纪中叶,透平原理在欧洲得到了较多应用。

1791年,英国人巴伯首次描述了燃气轮机的工作过程;1872年,德国人施托尔策设计了一台燃气轮机,并于1900~1904年进行了试验,但因始终未能脱开起动机独立运行而失败;1905年,法国人勒梅尔和阿芒戈制成第一台能输出功的燃气轮机,但效率太低,因而未获得实用。

1920年,德国人霍尔茨瓦特制成第一台实用的燃气轮机,其效率为13%、功率为370千瓦,按等容加热循环工作,但因等容加热循环以断续爆燃的方式加热,存在许多重大缺点而被人们放弃。

随着空气动力学的发展,人们掌握了压气机叶片中气体扩压流动的特点,解决了设计高效率轴流式压气机的问题,因而在30年代中期出现了效率达85%的轴流式压气机。与此同时,透平效率也有了提高。在高温材料方面,出现了能承受600℃以上高温的铬镍合金钢等耐热钢,因而能采用较高的燃气初温,于是等压加热循环的燃气轮机终于得到成功的应用。

1939年,在瑞士制成了四兆瓦发电用燃气轮机,效率达18%。同年,在德国制造的喷气式飞机试飞成功,从此燃气轮机进入了实用阶段,并开始迅速发展。

随着高温材料的不断进展,以及透平采用冷却叶片并不断提高冷却效果,燃气初温逐步提高,使燃气轮机效率不断提高。单机功率也不断增大,在70年代中期出现了数种100兆瓦级的燃气轮机,最高能达到130兆瓦。

与此同时,燃气轮机的应用领域不断扩大。1941年瑞士制造的第一辆燃气轮机机车通过了试验;1947年,英国制造的第一艘装备燃气轮机的舰艇下水,它以1.86兆瓦的燃气轮机作加力动力;1950年,英国制成第一辆燃气轮机汽车。此后,燃气轮机在更多的部门中获得应用。

在燃气轮机获得广泛应用的同时,还出现了燃气轮机与其他热机相结合的复合装置。最早出现的是与活塞式内燃机相结合的装置;50~60年代,出现了以自由活塞发气机与燃气轮机组成的自由活塞燃气轮机装置,但由于笨重和系统较复杂,到70年代就停止了生产。此外,还发展了柴油机燃气轮机复合装置;另有一类利用燃气轮机排气热量供热(或蒸汽)的全能量系统,可有效地节约能源,已用于多种工业生产中。

燃气轮机的工作过程是,压气机(即压缩机)连续地从大气中吸入空气并将其压缩;压缩后的空气进入燃烧室,与喷入的燃料混合后燃烧,成为高温燃气,随即流入燃气透平中膨胀作功,推动透平叶轮带着压气机叶轮一起旋转;加热后的高温燃气的作功能力显著提高,因而燃气透平在带动压气机的同时,尚有余功作为燃气轮机的输出机械功。燃气轮机由静止起动时,需用起动机带着旋转,待加速到能独立运行后,起动机才脱开。

燃气轮机的工作过程是最简单的,称为简单循环;此外,还有回热循环和复杂循环。燃气轮机的工质来自大气,最后又排至大气,是开式循环;此外,还有工质被封闭循环使用的闭式循环。燃气轮机与其他热机相结合的称为复合循环装置。

燃气初温和压气机的压缩比,是影响燃气轮机效率的两个主要因素。提高燃气初温,并相应提高压缩比,可使燃气轮机效率显著提高。70年代末,压缩比最高达到31;工业和船用燃气轮机的燃气初温最高达1200℃左右,航空燃气轮机的超过1350℃。

燃气轮机由压气机、燃烧室和燃气透平等组成。压气机有轴流式和离心式两种,轴流式压气机效率较高,适用于大流量的场合。在小流量时,轴流式压气机因后面几级叶片很短,效率低于离心式。功率为数兆瓦的燃气轮机中,有些压气机采用轴流式加一个离心式作末级,因而在达到较高效率的同时又缩短了轴向长度。

燃烧室和透平不仅工作温度高,而且还承受燃气轮机在起动和停机时,因温度剧烈变化引起的热冲击,工作条件恶劣,故它们是决定燃气轮机寿命的关键部件。为确保有足够的寿命,这两大部件中工作条件最差的零件如火焰筒和叶片等,须用镍基和钴基合金等高温材料制造,同时还须用空气冷却来降低工作温度。

对于一台燃气轮机来说,除了主要部件外还必须有完善的调节保安系统,此外还需要配备良好的附属系统和设备,包括:起动装置、燃料系统、润滑系统、空气滤清器、进气和排气消声器等。

燃气轮机有重型和轻型两类。重型的零件较为厚重,大修周期长,寿命可达10万小时以上。轻型的结构紧凑而轻,所用材料一般较好,其中以航机的结构为最紧凑、最轻,但寿命较短。

与活塞式内燃机和蒸汽动力装置相比较,燃气轮机的主要优点是小而轻。单位功率的质量,重型燃气轮机一般为2~5千克/千瓦,而航机一般低于0.2千克/千瓦。燃气轮机占地面积小,当用于车、船等运输机械时,既可节省空间,也可装备功率更大的燃气轮机以提高车、船速度。燃气轮机的主要缺点是效率不够高,在部分负荷下效率下降快,空载时的燃料消耗量高。

不同的应用部门,对燃气轮机的要求和使用状况也不相同。功率在10兆瓦以上的燃气轮机多数用于发电,而30~40兆瓦以上的几乎全部用于发电。

燃气轮机发电机组能在无外界电源的情况下迅速起动,机动性好,在电网中用它带动尖峰负荷和作为紧急备用,能较好地保障电网的安全运行,所以应用广泛。在汽车(或拖车)电站和列车电站等移动电站中,燃气轮机因其轻小,应用也很广泛。此外,还有不少利用燃气轮机的便携电源,功率最小的在10千瓦以下。

燃气轮机的未来发展趋势是提高效率、采用高温陶瓷材料、利用核能和发展燃煤技术。提高效率的关键是提高燃气初温,即改进透平叶片的冷却技术,研制能耐更高温度的高温材料。其次是提高压缩比,研制级数更少而压缩比更高的压气机。再次是提高各个部件的效率。

高温陶瓷材料能在1360℃以上的高温下工作,用它来做透平叶片和燃烧室的火焰筒等高温零件时,就能在不用空气冷却的情况下大大提高燃气初温,从而较大地提高燃气轮机效率。适于燃气轮机的高温陶瓷材料有氮化硅和碳化硅等。

按闭式循环工作的装置能利用核能,它用高温气冷反应堆作为加热器,反应堆的冷却剂(氦或氮等)同时作为压气机和透平的工质。

5. 新型燃气轮机

一、用途不同 航空发动机主要用于航空动力,其整机重要指标:推力型的侧重推重比、耗油率、比功、单位迎风面积推力等;功率型的侧重功重比、耗油率、比功等。

燃气轮机主要用于电力、工业、舰船和国防陆用等领域作为动力装置,通常是由航空发动机衍生出来的,而后独立发展的高技术产品。

其能量输出方式只有功率输出,整机重要指标:陆用型侧重热效率、比功、使用寿命等;车船型侧重热效率、比功、使用寿命、单位体积功率等。

二、组成部件不同 航空发动机和燃气轮机二者由于组成的部件不同,部件间的匹配关系不同。

航空发动机追求先进气动热力设计、高热力循环参数;追求高推重比、高功重比;追求矢量推力技术、隐身技术、高机动下的工作稳定性技术;需要考虑防冰冻、防鸟撞、防雷击等。

燃气轮机追求高热效率、低成本、耐久性、高可靠性、长寿命设计技术;追求先进燃气/蒸汽联合循环、间冷、回热、再热等复杂的热力循环技术,提高循环热效率。

三、压气机不同 航空发动机压气机追求的指标是在高效率和高稳定性的前提下尽量降低自重和减小迎风面积(风扇除外),满足非常宽的飞行包络线,而长寿命(即大修时间间隔)以及生产和制造成本是次要因素。

燃气轮机的压气机则是追求在高效率和高稳定性的同时,尽量延长压气机的寿命,降低生产和制造成本,而自重则是次要因素。

四、燃烧设计不同 航空发动机追求短环形燃烧室设计,高温升、高热容强度燃烧室设计技术;高空再点火和高空稳定燃烧技术;对民用航空发动机还要求高效低排放燃烧室设计技术。

燃气轮机尤其是重型燃气轮机,其结构多为管-环结合的干式低排放燃烧室。

追求油/气互换,合成气、中低热值气多燃料适应性,干式低NOx燃烧技术。

新一代重型燃气轮机多采用纯氢和富氢燃料,实现近零排放燃烧室设计技术。

五、透平不同 透平必须采用先进的气动设计高效率地转化能量,同时必须能够在极端的工作环境中保证工作的可靠性。

航空发动机透平进口温度更高,且叶片截面小,叶片短,采用气冷方式,高、低压透平或动力涡轮设计追求高负荷、高效率的气动设计;追求新型高7a686964616fe59b9ee7ad9431333431366265效冷却透平叶片设计技术,高负荷、高可靠性透平结构设计技术,对转涡轮设计技术和流热固多场耦合分析技术等。

燃气轮机尤其是重型燃气轮机,透平进口温度相对较低,透平叶片截面大,叶片长,既可采用空气冷却技术、也可采用蒸汽/空气综合冷却技术,多级透平设计追求高气动效率和长寿命。

来源:中国科学院——燃气轮机与航空发动机的关系—血浓于水与龙生九子

6. 中型燃气轮机

  燃气发电机组主要分为两种,一种是联合循环燃气轮机,一种是燃气内燃机。  燃气轮机功率比较大,主要用在大、中型电站,燃气内燃机功率比较小,主要用在小型的分布式电站。它是取代燃油、燃煤机组的新型绿色环保动力。充分利用各种天然气或有害气体作为燃料,变废为宝、运行安全方便,成本效益高,排放污染低,并适宜热、电联产等优点。

7. 超级燃气轮机图片

以下就是十大堪称“工业之花”的高科技产品。

第一,五轴联动叶片加工中心

就其重要性而言,五轴联动叶片加工中心一点不亚于芯片制造的光刻机,因为这台设备是用来加工航空发动机,汽轮机,鼓风机的核心部件-叶片。叶片是航发的关键零件,外形和内腔复杂,承受1700摄氏度的高温,并且大量使用钛合金等高强度的复合材料,加工难度之大可想而知。

目前我国高端的五轴联动叶片加工中心依赖进口,包括在国防领域,我国就引进了瑞士斯达拉格公司的产品。当然作为这一领域的佼佼者,包括美国的F35战机也在使用斯达拉格机床。除了瑞士企业,这种设备的主要生产国还包括德国(哈米勒),意大利(法拉利)等。

第二,工业机器人减速器

减速器是工业机器人(关节)的核心零部件之一,能生产工业机器人的国家很多,但是精密减速器却主要掌握在日本企业手中,在这一领域有两家企业,一个是纳博特斯克,主要生产RV减速器;一个是哈默纳科,以谐波减速器为主。RV减速器一般主要拥有基座,肩部等负载重部位,而谐波减速器主要用于小臂,腕部等部位。

纳博特斯克的前身是帝人精机,纳博克,是世界最大精密减速机制造商,占据大约六成的市场份额。目前全球关节机器人企业包括德国,瑞士的企业在内使用的减速机大都来自日本企业。

第三,半导体设备

提到半导体设备,大家首先会想到光刻机。而实际上半导体设备有非常多的种类,包括刻蚀机,薄膜设备,测试设备和清洗设备等,像全球最大的半导体设备企业美国应用材料公司生产除光刻机和清洗设备外几乎所有的半导体设备,而且这家企业在薄膜PVD设备领域一家独大,其地位并不比光刻机企业差。就整体市场价值而言,刻蚀机,光刻机,薄膜设备是价值最高的三大半导体设备。除光刻机外,美国企业在其它几种设备方面占据优势。

半导体设备技术难度非常大,像等离子刻蚀机加工的细孔只有头发丝的万分之一,并且对稳定性和洁净度的要求极高。在半导体设备中,还有一种用量很大的设备-磁悬浮分子泵,主要用来获得真空,目前能生产这种设备的企业只有少数几家,包括英国的爱德华,德国的莱宝,日本的岛津制作所等。

第四,10nm以下半导体制程

10nm以下半导体制程工艺对于大多数晶圆制造企业来说就是禁区,宣布停止研发更先进制程的企业不在少数。那么半导体制程工艺到底有多难?以5nm为例,光是工艺步骤就有1000个,并且每一个步骤的合格率要达到99.99%,而且工艺越先进,需要集成相关学科领域的技术就越多。目前掌握10nm以下工艺的企业仅有三家,包括台积电,三星电子和英特尔。

第五,大型高精度衍射光栅刻划机

光栅机是光学领域最重要的母机,被称为"精密机械之王"。光栅的主要作用在于光谱分析,通过它可以获得物质的成分信息,广泛应用于信息科学,物理学,天文以及军事等领域。举一个例子,油漆有不同的颜色,一般人能分辨出的变化可能有几十种,而光栅则能分辨出超过上亿种颜色变化。目前能生产这一设备的只有美国,日本和中国等少数几个国家。

第六,重离子治疗设备

作为国际尖端的放射治疗技术,重离子治疗设备被誉为重大科学装置,全球最大最复杂的一台设备重达670吨。重离子治疗设备体积庞大(包括100多米长/60米宽的加速器),涉及到加速器,生物学,影像学,电子,核物理等众多前沿学科,被认为是最先进的肿瘤治疗系统。目前全球运营的(包括在建)医用重离子加速器仅有16台,大部分位于日本及欧洲。而重离子(含质子)治疗设备企业包括西门子,Varion,日本的东芝,三菱电机,住友,日立等。

第七,高端磁共振设备

也叫医用磁共振成像设备,主要用于血管造影,心脏病学检查等。目前高端磁共振设备主要掌握在美国通用,德国西门子,荷兰飞利浦三家企业手中。磁共振设备同样涉及到生物化学,IT技术,传感器,光学,流体力学等许多交叉学科,对磁场技术,射频技术,成像技术等有非常高的要求,是对一家企业的综合工业能力的考验,也正因为如此,该领域的主导企业大都是一些业务横跨多个行业的综合性工业巨头,其中被称为GPS的三大企业都是拥有百年以上历史。

第八,燃气轮机

主要应用于电力设备,工业,航母等领域,其工作原理类似航空发动机,正是由于其巨大的工业,军事价值,因此重型燃气轮机也被视为大国重器,像西门子的一台超级燃气轮机的发电量,可以满足一个中等城市的用电需求。目前该领域的三大企业分别是美国通用,德国西门子和日本三菱重工(如今的三菱电力)。重型燃气轮机的核心部件包括燃烧室,压气机,高温透平叶片。

第九,大推力军用涡扇发动机

相比民用发动机,掌握大推力的军用涡扇发动机技术的国家更少,就目前来看,也仅有美国,俄罗斯和中国。大推力军用涡扇发动机通常是小涵道比,加力推力超过10吨的涡轮风扇发动机,主要使用在重型战机,单发中型战机;而大涵道比发动机通常使用在运输机,轰炸机上,关系到国家的战略威慑力和民用航空的发展。美国最先进的F135发动机(配备于F35战机),最大推力在19-20吨,生产商为普惠发动机公司。俄罗斯主要的军用涡扇发动机企业包括土星公司等。

第十,超精密轴承/高端轴承

轴承的种类非常多,被称为"高端产品的关节",有航空航天领域的特种轴承,有用于精密机床主轴产品的超精密轴承(P4级以上),有重型机械用轴承,有高铁轴承,有半导体加工设备轴承等。作为一个基础性行业,轴承在很多高科技领域发挥着重要影响,像航空发动机的主轴承就是航发的关键部件之一,对精度,性能,寿命,可靠性有着极高要求。目前高端轴承生产企业主要集中在德国,美国,瑞典以及日本等国。

8. 最强燃气轮机

蒸汽机有很多种,世界上动力最强的蒸汽机是蒸汽轮机,它的全称叫蒸汽涡轮发动机(Steam turbine)是一种撷取(将水加热后形成的)水蒸汽之动能转换为涡轮转动的动能的机械。相较于原由詹姆斯·瓦特发明的单级往复式蒸汽机,涡轮蒸汽机大幅改善了热效率,更接近热力学中理想的可逆过程,并能提供更大的功率,至今它几乎完全取代了往复式蒸汽机。涡轮蒸汽机特别适用于火力发电和核能发电,世界上大约80%的电是利用涡轮蒸汽机所产生。

老式船舰中也有不少使用,但是在现代化船舰中已经被燃气涡轮引擎全面取代,只有少数特例如现代级还使用蒸汽涡轮。

蒸汽轮机,简单的说就是个风车,发明人已不可考,但它的原理是:燃气-蒸汽轮机联合循环,即把燃气轮机和蒸气轮机这两种按不同热力循环工作的热机联合在一起的装置,有时也简称为联合循环。