1. 伺服电机步距角可调吗
1、首先确认控制器实际发出的脉冲当前值是否和预想的一致,如不一致则检查并修正程序;
2、监视伺服驱动器接收到的脉冲指令个数是否和控制器发出的一致,如不一致则检查控制线电缆;
3、检查伺服指令脉冲模式的设置是否和控制器设置得一致,如CW/CCW 还是脉冲+方向;
4、伺服增益设置太大,尝试重新用手动或自动方式调整伺服增益;
5、伺服电机在进行往复运动时易产生累积误差,建议在工艺允许的条件下设置一个机械原点信号,在误差超出允许范围之前进行原点搜索操作;
6、机械系统本身精度不高或传动机构有异常(如伺服电机和设备系统间的联轴器部发生偏移等)。
2. 伺服电机有步距角吗
——————————————————————— 先说工作原理: 步进电机是一种将电脉冲转化为角位移的执行机构。当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。 可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 而伺服电机内部的转子是永磁铁,驱动器控制的U/V/W 三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 —————————————————————— 区别1: 控制的方式不同 步进电机是通过控制脉冲的个数控制转动角度的,一个脉冲对应一个步距角。 伺服电机是通过控制脉冲时间的长短控制转动角度的。 区别2:所需的工作设备和工作流程不同 步进电机所需的供电电源(所需电压由驱动器参数给出),一个脉冲发生器(现在多半是用板块),一个步进电机,一个驱动器(驱动器设定步距角角度,如设定步距角为 0.45°,这时,给一个脉冲,电机走 0.45°);其工作流程为步进电机工作一般需要两个脉冲:信号脉冲和方向脉冲。 伺服电机所需的供电电源是一个开关(继电器开关或继电器板卡),一个伺服电机;其工作流程就是一个电源连接开关,再连接伺服电机。 区别3 : 低频特性不同 步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。 交流伺服电机运转非常平稳,即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检测出机械的共振点,便于系统调整。 区别4 :矩频特性不同 步进电机的输出力矩随转速升高而下降,且在较高转速时会急剧下降,所以其最高工作转速一般在 300~600r/min。 交流伺服电机为恒力矩输出,即在其额定转速(一般为 2000 或 3000 r/min)以内,都能输出额定转矩,在额定转速以上为恒功率输出。 区别5: 过载能力不同 步进电机一般不具有过载能力。交流伺服电机具有较强的过载能力。 以松下交流伺服系统为例,它具有速度过载和转矩过载能力。其最大转矩为额转矩的 3倍,可用于克服惯性负载在启动瞬间的惯性力矩。 (步进电机因为没有这种过载能力,在选型时为了克服这种惯性力矩,往往需要选取较大转 矩的电机,而机器在正常工作期间又不需要那么大的转矩,便出现了力矩浪费的现象) 区别6: 速度响应性能不同 步进电机从静止加速到工作转速(一般为每分钟几百转)需要 200~400ms。 交流伺服系统的加速性能较好,以松下MSMA400W 交流伺服电机为例,从静止加速到其额定转速 3000 r/min。仅需几 ms,可用于要求快速启停的控制场合。 —————————————————————— 参考文献: 《步进电机和伺服电机的比较》,王 勇 ,2010,西部煤化工
3. 如何让伺服电机转动固定角度
看是多少倍频,如果是5000线,4倍频的,则:360/(5000X4)=0.018°一般1000线编码器就够用了。产品的高精度是由产品本身决定的。编码器还分增量式,绝对式。绝对式编码器精度更高。编码器是20位。编码器旋转一周 有多少个导通电路的 位置
4. 伺服电机 角度
你说的测量电机旋转角度是指实验室测量电机旋转定位精度还是指设备上用来反馈角度位置?
如果是前者,建议使用激光跟踪仪测量电机的角度定位精度,测量精度高,测量报告直观,全面,测试费用一次两千左右。
如果是后者,那要看你预期的角度精度和成本,一般圆光栅更容易实现更高精度,成本更高。
圆形光栅一般安装在机构执行端,能直接反馈执行端的定位精度,所以更容易实现高精度定位。
编码器一般伺服电机自带,直接反馈电机轴的角度位置信息,但是电机到执行端一般有一些传动机构,这些传动机构会造成执行端和电机轴之间的误差,虽然有误差,但是重复定位精度不错,可以通过软件补偿提高绝对定位精度。
当然,机构的运动精度还跟结构刚度,运动速度加速度,零件加工精度,装配精度等相关。
另外,编码器也可以安装到执行端的旋转轴上,会有助于提高精度,这种设计应该比较少见。
5. 伺服电机步距角可调吗怎么调
伺服电机都是由电机和控制系统组成的,为了对电机进行准确的控制,需要电机转子的位置参数。编码器的作用就是测定电机的转速和位置参数,从而对电机进行准确的控制。
在电机运行前,对编码器进行调零的目的就是告诉编码器转子的初始位置点,起动电机后,编码器可以通过检测到的转速和这个初始转子位置,计算出转子在不同时刻的位置,进而进行控制。
6. 伺服电机的角度精度
伺服电机的精度,可以达到1um的。那单位就应该是um了。伺服电机的精度,取决于其上面的编码器的分辨率。
伺服电机:1圈至少可以达到数千至数百万个脉冲;DD马达:1圈的分辨率也可以达到数十万至百万;凸轮分割器:普通精度可以达到+/-30SEC.具体不同品牌不同型号精度都会有比较大的差异,仅供参考。
7. 伺服电机步进角
1、步进电机和伺服电机的控制精度不同。
两相混合式步进电机步距角一般为1.8°,三相混合式步进电机步距角为1.2°。也有一些高性能的步进电机步距角更小。
交流伺服电机的控制精度由电机轴后端的旋转编码器保证。对于带标准2500线编码器的伺服电机而言,由于驱动器内部采用了四倍频技术,其脉冲当量为360°/10000=0.036°。
对于绝大多数用户而言,无论是机械传动精度,还是光电传感器来定位精度,都没有步进电机伺服电机的物理精度高,单方面追求电机的最高精度是没有必要的。
2、步进电机和伺服电机矩频特性不同。
步进电机的输出力矩随转速升高而下降,且在较高转速时会急剧下降,所以其最高工作转速一般在0~900RPM。交流伺服电机为恒力矩输出,即在其额定转速(一般为1000~3000RPM)以内,都能输出额定转矩。
3、步进电机和伺服电机运行性能不同。
步进电机的控制为开环控制,启动频率过高或负载过大易出现丢步或堵转的现象,停止时转速过高易出现过冲的现象,所以为保证其控制精度,应处理好升、降速问题。