紫外光刻机多少钱(超紫外线光刻机)

海潮机械 2023-01-30 11:53 编辑:admin 67阅读

1. 超紫外线光刻机

阿斯麦公司生产的极紫外光刻机,它的光源和控制软件来自美国,超精密机械及蔡司镜头来自德国,特殊复合材料和光学器材技术来自日本,轴承和阀件由瑞典和法国提供。

2. 光刻机 紫外

光刻机是制作芯片并不可少的重要工具,大家都知道,光刻机技术几乎被荷兰ASML所垄断,那么全球最先进的光刻机是多少nm的?中国现在又能够做出几nm的芯片呢?

  目前全球最先进的光刻机已经可以实现5nm的工艺制程了,它是荷兰ASML公司的极紫外光刻机(EUV),是目前全球最顶尖的光刻机设备。

  中国目前最先进的光刻机应该是22nm的,它的关键部件可以实现国产化了。但中国已经可以实现14nm芯片的量产了,这是中芯国际取得的一个重大成绩。

3. 光刻机的紫外光源

光刻机的紫光是由准分子激光轰击锡滴靶材产生的。

最早光刻机的光源是采用汞灯产生的紫外光源。随后,业界采用了准分子激光的深紫外光源。将波长进一步缩小到ArF的193nm,既duv光刻机的深紫外光光源。这之后,业界开始采用极紫外光源(EUV:ExtremeUltravioletLight)来进一步提供更短波长的光源。目前主要采用的办法是将准分子激光照射在锡等靶材上,激发出13.5nm的光子,作为光刻机光源,产生的就是极紫外光。

4. 级紫外光刻机

不是,最好的4纳米。

光刻机本身最高的应该是euv极紫外光光源波长的光刻机,其波长为13.5纳米。用euv光刻机可以制造22纳米以下制程的芯片,目前最高可商业量产芯片的制程为4纳米,分别是高通骁龙8移动平台系列和联发科天玑9000。而未商业量产阶段的芯片最高可以到3纳米制程。

5. 红外光刻机

背景技术:

镜头是将拍摄景物在传感器上成像的器件,相当于相机的“眼睛”,通常由几片透镜组成,光线通过时,镜片们会层层过滤杂光(红外线等),所以,镜头片数越多,成像就越真实。目前对焦镜头里,都是使用凸透镜和凹透镜的组合,利用光的折射原理,把光导到传感器的成像面上。为了更加镜头解析力与对比度并保证画面质量,给镜头的片数和结构带来了一定的限制,导致镜头的厚度无法做薄,不满足当前设备的轻薄要求。

技术实现要素:

有鉴于此,本发明实施例为解决现有技术中存在的问题而提供一种光刻镜片的制作方法和镜头。

本发明实施例的技术方案是这样实现的:

一方面,本发明实施例提供一种光刻镜片的制作方法,所述方法包括:

在基材的表面上涂覆光刻材料;

利用光刻掩膜板对光刻材料进行刻蚀;其中,所述光刻掩膜板上具有多个具有预设的形状的掩膜图形,在每一所述掩膜图形上不同位置的透光率不同;

对刻蚀后的光刻材料进行固化处理,得到光刻镜片。

另一方面,本发明实施例提供一种镜头,所述镜头至少包括沿物方到镜方共轴设置的第一镜片、第二镜片和第三镜片,其中:

第一镜片用于将入射光线进行聚光;

第二镜片用于将经过所述第一镜片的入射光进行均匀发散,形成平行于轴向的光;

第三镜片用于将经过第二镜片的入射光进行聚光,使得聚光后的光线照射到感光芯片。

本发明实施例提供一种光刻镜片的制作方法和镜头,其中,首先在基材的表面上涂覆光刻材料;利用光刻掩膜板对光刻材料进行刻蚀;其中,所述光刻掩膜板上具有多个具有预设的形状的掩膜图形,在每一所述掩膜图形上不同位置的透光率不同;对刻蚀后的光刻材料进行固化处理,得到光刻镜片;如此,能够利用光刻技术做出具有一个个小槽的光刻镜片,从而利用小槽引导光路,进而能够减少镜头中镜片的片数,降低镜头的高度。

6. 紫外线光刻技术

制造更强大的芯片的关键是光的波长大小。波长越短,可以蚀刻到硅片上的晶体管就越多。更多的晶体管等于一个更强大、更快的微处理器。随着芯片制造商将波长减少到100纳米,他们将需要一种新的芯片制造技术。使用深紫外光蚀刻技术的问题是,当光的波长变小时,光会被用于聚焦的玻璃透镜吸收。结果是光线无法到达硅片上,因此晶圆上没有产生电路图案。这个时候就需要极紫外光刻机了。

用深紫外光刻技术制造的芯片使用的是248纳米的光,也有一些制造商使用193纳米光。有了极紫外光刻技术,芯片将用13纳米的光制造。基于波长越小成像效果越好的定律,13纳米光将提高投射到硅片上的图案质量,从而提高芯片的速度。