1. 光刻机最重要的是什么
光刻机的精度主要取决于光源波长、物镜分辨率、双工台精度等。
目前全球唯一高端光刻机制造商是荷兰阿斯麦尔公司生产的euv13.5纳米极紫外光光源光刻机,该光刻机是目前全球精度最高的,这是集合了全球顶尖技术组合而成的,其零部件多达十万个,每年产量不超过五十台,从整机安装调试到开始生产要长达一年时间之久,可见该设备的复杂性,任何一个环节出现问题都足以影响该设备的精度。而且13.5纳米的光源属于第五代,和中端193纳米光源的第四代精度相差巨大,所以光源作为最主要的核心部件之一,对精度有决定性影响。再有就是物镜的分辨率,物镜可以达到高2米直径1米,甚至更大。光刻机的整个曝光光学系统,由数十块锅底大的镜片串联组成,其光学零件精度控制在几个纳米以内,目前光刻机镜头最强大的是老牌光学仪器公司德国蔡司,其制造的物镜分辨率是全球第一的。
2. 光刻机有多重要
euv光刻机目前全球只有荷兰阿斯麦尔一家可以制造,严格来说是组装,因为其主要零部件来自众多不同国家。所以,凭一国之力短期内要突破所有euv光刻机技术不太现实。
比较现实的是面向中低端光刻机的研发和中低端芯片的市场占有率。
而且在新材料新技术方面寻求替代技术也很重要,比如碳基芯片、光子芯片、量子芯片等
3. 光刻机最主要的是什么
制造光刻机涉及的产业体系非常庞大,但简单来说主要是两点。
首先制造光刻机需要数万个零部件,一台光刻机,还有8万个零件最先进的机子外观,EUV光刻机所需的零部件更是超过10万个。整机光刻机包含曝光系统(照明系统和投影物镜),工件台掩模台,系统自动对准系统,整机软件系统等。
而在这些核心部件中,光学镜头,光学光源和工件台又是核心中的核心。
其次需要精准的组装技术。
值其所需的零部件后,需要精准的组装技术,把零部件组装起来变成光刻机。
4. 光刻机的作用是啥
光刻机的作用是蚀刻芯片的功能及线路,当然也包括了制造处理器这样的大规模集成电路或者内存颗粒、闪存颗粒等等。--光刻机是制造微机电、光电、二极体大规模集成电路的关键设备。可以分为两种,分别是模板与图样大小一致的contact aligner,曝光时模板紧贴芯片;以及利用类似投影机原理的stepper,获得比模板更小的曝光图样。
5. 光刻机主要用来干什么
刻蚀机和光刻机的区别:光刻机把图案印上去,然后刻蚀机根据印上去的图案刻蚀掉有图案(或者没有图案)的部分,留下剩余的部分。刻蚀相对光刻要容易。
离子注入机是高压小型加速器中的一种,应用数量最多。它是由离子源得到所需要的离子,经过加速得到几百千电子伏能量的离子束流,用做半导体材料、大规模集成电路和器件的离子注入,还用于金属材料表面改性和制膜等
6. 光刻机的重要性
虽然通过浸没式技术和多重光刻技术等,采用ArF光源的光刻机可以满足7nm节点工艺要求,但是在实际应用中仍然面临巨大挑战,首先就是光刻机使用的超纯水中可能含有影响晶圆表面而形成缺陷的颗粒物,同时水泡会分散曝光所用的光,歪曲空中的影像而在晶圆的光阻层中形成气泡缺陷。同时为了满足先进工艺要求,浸没式光刻机采用了双重光刻技术、多重光刻技术和自对准双重成像技术等技术,这样的结果是工艺成本上升和良率的下降,而这对晶圆厂、设计公司都是不利的。
EUV光刻机的优点及核心技术
EUV光刻机的引入让总体工艺成本降低了12%,工艺过程的简化促进良率提升9%,同时更好的成像性能导致集成电路性能比采用浸没式光刻机的更加优异。当然目前EUV光刻机的产出率要低于浸没式光刻机,ASML的NXE3300B、3400B的产出率为125片/小时,而浸没式光刻机NXT2000i和NXT2050i的产出率为275片/小时和295片/小时,差距仍然明显。
EUV光刻机主要有物镜、掩模台、工件台、光源、照明等组成,相比193nm的ArF光,几乎所有的光学材料对13.5nm的极紫外光都有很强的吸收,就连空气都能吸收EUV,到达光刻胶时光能量损失超过95%,因此EUV光刻机的光学系统采用全反射式曝光系统,这也是EUV光刻机的核心技术:
当然EUV光刻机还涉及其他关键技术。在架构设计方面,要做到与光学光刻机共用平台,针对真空腔与全反射式曝光系统开展系统设计;在高真空环境下还要研究密封性设计,材料方面还要考虑抑制释放气体以及相应的污染控制。
EUV的反射镜表面镀有Mo/Si多层膜,其中Mo层厚度为2.8nm,Si层厚度为4.1nm,一个Mo/Si的厚度为6.9nm,在多层膜表面镀有一层2-3nm的Ru保护膜。在Mo/Si膜的表面镀一层Ru膜的目的是可以有效延缓Mo/Si的氧化,降低C在表面沉积的速率。
实际上在EUV光学系统环境中水分子和碳氢化合物是导致反射镜表面反射率降低的主要原因。这些水分子和碳氢化合物可能来源是材料表明的放气、泄漏和真空系统自身。在高能量EUV光照下水分子会氧化Mo/Si,碳氢化合物会分解,在反射镜表面沉积一层碳膜。数据显示反射镜表面沉积0.3nm的氧化层便会导致约1%的反射率损失。
当然目前业界也在研究其他多层膜以便进一步提高反射率,比如在Mo/Si层中加入Rh、Sr等材料;对每一层材料厚度做优化以及使用B4C作为保护层等。
EUV光刻机的光路设计及曝光系统
EUV光刻机的曝光系统设计成一系列反射镜,光路的路径如下:光源发出的13.5nm的光被收集后通过几个反射镜形成所需要的光照方式并照射在掩模上。掩模同样设计成反射式的,从掩模反射出的光包含了掩模上的图形信息,这些带有信息的光通过另一组反射镜投影在晶圆上实现曝光:
在EUV光刻机中通过使用6个反射镜实现了0.33 的数值孔径,但若要提升数值孔径就需要增加更多的反射镜,比如将反射镜增加到8个便可将数值孔径提升到0.5。另外通过增加非球面度可进一步提高成像质量,减少波前误差;通过降低面型粗糙度可降低杂散光,提高对比度等:
ASML第二代EUV光刻机有望将数值孔径提升到0.5以上,该机型计划于2024年量产。
不过有一个新的问题是由于使用的反射镜中心有孔,这样带来的问题是曝光视场的缩小,导致达不到26mm*33mm的曝光区域,而目前26mm*33mm在深紫外和极紫外为统一的视场标准。
EUV光源的结构及输出功率
目前EUV光刻机的光源有两种:用放电产生的等离子体发射EUV光子的DPP技术以及用激光激发的等离子体来发射EUV光子的LPP技术,这两个技术的共同点是先激发产生20-50eV的等离子体,等离子体再辐射出EUV光子。不过LPP因为比较容易实现输出功率的提升,虽然结构复杂,造价较高,但仍然成为主要的光源收集方式。
EUV的LPP光源系统的结构,由驱动激光器、光束传递系统和EUV腔系统三部分组成。驱动激光系统包含CO2激光器和预脉冲激光器,其中CO2激光器是一套主振功率放大(MOPA)系统,该主振荡器包含多个量子级联激光器,一套再生放大器,和一套基于射频放电激发、平板波导和多程放大器的后置放大系统:
预脉冲激光和CO2激光束在光束传输系统中被混合起来,并通过EUV腔系统中的对焦单元导入到等离子体态的锡液滴上。锡等离子体产生的EUV光束被收集镜收集起来,并导入到曝光系统中。超导磁场系统位于EUV腔外部,并能在EUV腔内产生高强度的磁场,从而保护收集器镜面不受锡等离子体产生的高速锡离子的影响。此外,该系统配备有若干套射击控制回路,如液滴定位控制、激光光束轴、定时控制器,以确保液滴和激光器间能拥有μm至nm量级的射击精度。
在DPP技术中注入的材料如Sn或Xe在电场作用下生成等离子体,然后磁场对其进一步压缩使之达到高温、高密度并产生EUV辐射。当然在LPP技术中是用激光激发方式产生EUV辐射。
目前光刻机主要用Sn来激发EUV光子,主要的原因是Xe的转换效率不到1%,绝大多数输入能量变成热能,因此效率太低,而且光源散热不容易解决。
衡量EUV光源的重要性能指标为转换效率和输出功率,其中转换效率为13.5nm附近2%带宽内输出的能量占总输入能量的百分比;输出功率则是在中间汇聚点测得的功率:
光刻机光源输出功率和光刻胶敏感度是决定光刻机产能的主要因素,曝光功率越大、光刻胶越敏感,晶圆曝光所需要的时间就越短,产出率越高。
目前提高EUV光源输出功率的方法主要在四个方面:第一是增加激光器的激发功率,包括增加激光器功率放大的能力和提高脉冲频率;第二是提高转换效率;第三是提高对发光的控制,包括提高激光与Sn滴之间的稳定性和Sn滴的动量;第四是提高收集系统使用寿命。
7. 光刻机最重要的是什么原理
光刻是集成电路最重要的加工工艺,他的作用,如同金工车间中车床的作用。光刻是制造芯片的最关键技术,在整个芯片制造工艺中,几乎每个工艺的实施,都离不开光刻的技术。
光刻机的工作原理: 利用光刻机发出的光通过具有图形的光罩对涂有光刻胶的薄片曝光,光刻胶见光后会发生性质变化,从而使光罩上得图形复印到薄片上,从而使薄片具有电子线路图的作用。
这就是光刻的作用,类似照相机照相。照相机拍摄的照片是印在底片上,而光刻刻的不是照片,而是电路图和其他电子元件。