1. 谐波齿轮减速器的优点
1、谐波齿轮减速机是齿轮减速机中的一种新型传动结构,它是利用柔性齿轮产生可控制的弹性变形波,引起刚轮与柔轮的齿间相对错齿来传递动力和运动。这种传动与一般的齿轮传递具有本质上的差别,在啮合理论、集合计算和结构设计方面具有特殊性。谐波齿轮减速器具有高精度、高承载力等优点,和普通减速器相比,由于使用的材料要少50%,其体积及重量至少减少1/3。
2、谐波减速器主要由三个基本构件组成:1.带有内齿圈的刚性齿轮(刚轮);2.带有外齿圈的柔性齿轮(柔轮);3.波发生器H。
2. 谐波减速器传动比
减速器的传动比一般为6/38=6.33;一般的减速机构减速比标注都是实际减速比,但有些特殊减速机如摆线减速机或者谐波减速机等有时候用舍入法取整,且不要分母,如实际减速比可能为28.13,而标注时一般标注28。尽量选用接近理想减速比:减速比=伺服马达转速/减速机出力轴转速。
3. 谐波齿轮减速装置的工作原理及其特点
谐波齿轮减速机在航空、航天、能源、航海、造船、仿生机械、常用军械、机床、仪表、电子设备、矿山冶金、交通运输、起重机械、石油化工机械、纺织机械、农业机械以及医疗器械等方面得到日益广泛的应用,特别是在高动态性能的伺服系统中,采用谐波齿轮传动更显示出其优越性。它传递的功率从几十瓦到几十千瓦,但大功率的谐波齿轮传动多用于短期工作场
4. 谐波齿轮的减速比
1.小型轻量
谐波减速器与一般齿轮减速器相比较,输出力矩相同时,它的体积可减小2/3,重量可减轻1/2。
2.传动精度高
因为谐波传动中同时啮合的齿数多,误差平均化,即多齿啮合对误差有相互补偿作用,故传动精度高。在齿轮精度等级相同的情况下,传动误差只有普通圆柱齿轮传动的1/4左右。同时可采用微量改变波发生器的半径来增加柔轮的变形使齿隙很小,甚至能做到无侧隙啮合,因此传动空程小,适用于反向转动。
3.传动速比大
单级谐波传动速比范围为70-320,在某些装置中可达到1000,多级传动速比可达30000以上。它不仅可用于减速,也可用于增速的场合。
4.结构简单紧凑、安装方便
因为只有三个基本组成部件,且输入与输出同,所以结构简单紧凑,安装方便。
5.承载能力高
这是因为谐波传动中同时啮合的齿数多,双波传动同时啮合的齿数可达总齿数的30%以上,而且柔轮采用了高强度材料,齿与齿之间是面接触。
6.可向密闭空间传递运动
利用柔轮的柔性特点,轮传动的这一特定优点是现有其他传动无法比拟的。
7.传动效率高、运动平稳
由于柔轮轮齿在传动过程中作均匀的径向移动,因此,即使输入速度很高,轮齿的相对滑移速度仍是极低(故为普通渐开线齿轮传动的百分之—),所以,轮齿磨损小,效率高(可达69%-96%)。又由于啮入和啮出时,齿轮的两侧都参加工作,因而无冲击现象,运动平稳。
5. 谐波齿轮减速器的特点
摆线针轮减速机是一种应用行星式传动原理,采用摆线针齿啮合的新颖传动装置。摆线针轮减速机全部传动装置可分为三部分:输入部分、减速部分、输出部分。在输入轴上装有一个错位180°的双偏心套,在偏心套上装有两个称为转臂的滚柱轴承,形成H机构、两个摆线轮的中心孔即为偏心套上转臂轴承的滚道,并由摆线轮与针齿轮上一组环形排列的针齿相啮合,以组成齿差为一齿的内啮合减速机构,(为了减小摩擦,在速比小的减速机中,针齿上带有针齿套)。
当输入轴带着偏心套转动一周时,由于摆线轮上齿廓曲线的特点及其受针齿轮上针齿限制之故,摆线轮的运动成为既有公转又有自转的平面运动,在输入轴正转周时,偏心套亦转动一周,摆线轮于“相反方向”转过一个齿从而得到减速,再借助W输出机构,将摆线轮的低速自转运动通过销轴,传递给输出轴,从而获得较低的输出转速。
所以摆线针轮减速机的输入轴和输出轴转动方向为什么是反向的。
6. 谐波减速器传动的缺点
减速机一般用于低转速大扭矩的传动设备,把电动机、内燃机或其它高速运转的动力通过减速机的输入轴上的齿数少的齿轮啮合输出轴上的大齿轮来达到减速的目的,普通的减速机也会有几对相同原理齿轮达到理想的减速效果,大小齿轮的齿数之比,就是传动比。
减速机在原动机和工作机或执行机构之间起匹配转速和传递转矩的作用,是一种相对精密的机械。使用它的目的是降低转速,增加转矩。它的种类繁多,型号各异,不同种类有不同的用途。减速器的种类繁多,按照传动类型可分为齿轮减速器、蜗杆减速器和行星齿轮减速器;按照传动级数不同可分为单级和多级减速器;按照齿轮形状可分为圆柱齿轮减速器、圆锥齿轮减速器和圆锥-圆柱齿轮减速器;按照传动的布置形式又可分为展开式减速器、分流式减速器和同轴式减速器。
的主要特点是具有反向自锁功能,可以有较大的减速比,输入轴和输出轴不在同一轴线上,也不在同一平面上。但是一般体积较大,传动效率不高,精度不高。谐波减速机的谐波传动是利用柔性元件可控的弹性变形来传递运动和动力的,体积不大、精度很高,但缺点是柔轮寿命有限、不耐冲击,刚性与金属件相比较差。输入转速不能太高。行星减速机其优点是结构比较紧凑,回程间隙小、精度较高,使用寿命很长,额定输出扭矩可以做的很大。但价格略贵。齿轮减速机具有体积小,传递扭矩大的特点。齿轮减速机在模块组合体系基础上设计制造,有极多的电机组合、安装形式和结构方案,传动比分级细密,满足不同的使用工况,实现机电一体化。齿轮减速机传动效率高,耗能低,性能优越。摆线针轮减速机是一种采用摆线针齿啮合行星传动原理的传动机型,是一种理想的传动装置,具有许多优点,用途广泛,并可正反运转。
7. 谐波齿轮减速器的优点是什么
谐波减速器主要应用于航空、航天、机器人、通信设备、电子设备、医疗器械等领域,由于谐波减速器的基本组成部件和谐波减速器的工作原理与普通的齿轮减速器有很大的差异化,因此决定了它拥有普通齿轮减速器无法比拟的优点,下面是国森科整理的七个谐波减速器的主要优点。
1.小型轻量
谐波减速器与一般齿轮减速器相比较,输出力矩相同时,它的体积可减小2/3,重量可减轻1/2。
2.传动精度高
因为谐波传动中同时啮合的齿数多,误差平均化,即多齿啮合对误差有相互补偿作用,故传动精度高。在齿轮精度等级相同的情况下,传动误差只有普通圆柱齿轮传动的1/4左右。同时可采用微量改变波发生器的半径来增加柔轮的变形使齿隙很小,甚至能做到无侧隙啮合,因此传动空程小,适用于反向转动。
3.传动速比大
单级谐波传动速比范围为70-320,在某些装置中可达到1000,多级传动速比可达30000以上。它不仅可用于减速,也可用于增速的场合。
4.结构简单紧凑、安装方便
因为只有三个基本组成部件,且输入与输出同,所以结构简单紧凑,安装方便。
5.承载能力高
这是因为谐波传动中同时啮合的齿数多,双波传动同时啮合的齿数可达总齿数的30%以上,而且柔轮采用了高强度材料,齿与齿之间是面接触。
6.可向密闭空间传递运动
利用柔轮的柔性特点,轮传动的这一特定优点是现有其他传动无法比拟的。
7.传动效率高、运动平稳
由于柔轮轮齿在传动过程中作均匀的径向移动,因此,即使输入速度很高,轮齿的相对滑移速度仍是极低(故为普通渐开线齿轮传动的百分之—),所以,轮齿磨损小,效率高(可达69%-96%)。又由于啮入和啮出时,齿轮的两侧都参加工作,因而无冲击现象,运动平稳。
谐波减速器由于谐波传动原理的优越性,拥有以上7个其它普通齿轮减速器不可比拟的优点,因此可以在各个重要领域的重要部件得到重要的应用。
8. 谐波齿轮减速器的优点和缺点
总的来说应该分三类,涡轮蜗杆减速机,谐波减速机,摆线针轮减速机和行星减速机。
其中涡轮蜗杆强度最大,但是效率低,精度也不高,但是它有反向自锁功能,可以有较大的减速比,体积大,输入转速3000以上,谐波减速机的主要特点是体积不大.精度不高,寿命有限,不耐冲击,刚性和金属件相比较差,输入转速不能太高,输入转速2000以下,行星减速机结构比较紧凑,回程间隙小,精度最高,试用寿命很长,额定输出扭矩可以做的很大,但价格略贵。
9. 谐波减速器齿形
目前所有回答都是错的,正确答案是『斜齿轮受齿距误差影响更小、传动精度更高』,斜齿轮最大优势是高传动精度,其次才是『高强度』或『噪音/震动小』。
即使是直齿轮,通过修形(或简单地增加齿厚)也能达到『高强度』、通过变位也能达到『噪音/震动小』(端面重合度 = 2 即可,并不需要 3 的斜齿轮)。
某些情况下(齿面强度低、齿根强度高的设计),斜齿轮的强度甚至还低于直齿轮。
此外,斜齿轮的制造成本远高于直齿轮(3 倍以上,特别是斜内齿圈,能做的公司不多),还需要使用角接触轴承(价格是普通轴承 2~3 倍),绝大多数传动系统对体积和重量并不敏感(至少不会达到锱铢必较的程度),而传动精度几乎是所有传动系统的第一追求。
(传动精度有两个指标,其一是角度误差,其二是扭矩误差,它们本质上是等价的,本文以『扭矩误差』为主;本回答讨论的是直径不超过 300 mm 的常规齿轮,工业大齿轮不在讨论范围内;关于齿轮制造成本,评论区很多齿轮厂的朋友都发表了自己的看法,但这方面的讨论是没有意义也没有尽头的,齿轮和齿轮之间差异极大,要求不同、成本也不同,精密传动中使用的斜齿轮制造成本确实远高于直齿轮,但其他用途的齿轮,答主不是特别了解,因此不参与讨论)
1. 传动平稳性很多朋友都提到了斜齿轮能提高传动平稳性,但这个理解是片面的。
传动平稳性主要由线载荷曲线(齿轮啮合时受力变化曲线)决定:斜齿轮典型的线载荷曲线(3D)斜齿轮典型的线载荷曲线(2D)线载荷曲线受很多因素影响(齿厚、材料模量、表面硬化工艺、加工误差...),齿轮类型(直齿轮/斜齿轮)的影响并不在第一位,甚至,同规格(模数、齿数、齿厚)下,直齿轮的线载荷曲线可能比斜齿轮更平滑:直齿轮典型的线载荷曲线(3D)直齿轮典型的线荷载曲线(2D)对比直齿轮和斜齿轮的传动平稳性,就像大街上随便指着一台宝马(斜齿轮)和一台比亚迪(直齿轮)问谁更贵(传动更平稳),这是没有意义的,宝马有低端款、比亚迪有高端款,同价位下宝马也不一定比比亚迪好(同样的制造成本下,斜齿轮的线载荷曲线不一定比直齿轮更平滑)。
任何材料受力时都会形变、受力过程都是渐变的,现代的齿轮接触分析(TCA,Tooth Contact Analysis)早已打破了“斜齿轮是逐渐受力而直齿轮是瞬间受力”的说法,而国内很多教材还尚未更新。
纯粹从运动平稳性(线载荷曲线平滑度)的角度来看,直齿轮甚至可能做得比斜齿轮还好,斜齿轮在这方面的最大优势是噪音和震动控制(端面重合度高、模态分析中的谐波共振小)。
2. 强度即使不用斜齿轮,非标直齿轮依靠修形就能将齿『根』强度提高 50% 以上,详情请参考:什么是齿轮修形?齿轮强度有两个方面,其一是齿『根』强度,其二是齿『面』强度。
与直齿轮相比,斜齿轮的齿『根』强度更高,但齿『面』强度更低:齿轮副主要参数:1 模 30 齿、输入扭矩 10 Nm、输入转速 4775 RPM、无摩擦。
直齿轮的齿面应力(左)、齿根应力(右)。
斜齿轮的齿面应力(左)、齿根应力(右)。
齿轮直径、压力角相同的情况下,齿『根』强度主要由模数和厚度决定,齿『面』强度主要由厚度决定、受模数影响很小。
因此,斜齿轮适合齿厚余量较大的齿轮设计,换而言之,斜齿轮需要更大的最小齿厚、斜齿轮往往比直齿轮更厚。
由此可见,将直齿轮替换为斜齿轮,不一定能提高齿轮强度,某些情况下(齿面强度低、齿根强度高的设计),甚至会降低齿轮强度。3. 传动精度齿距误差是衡量齿轮精度的最主要指标(齿距误差和背隙有一定换算关系,商家更喜欢标背隙而不是齿距误差,因为背隙的数据更好看,就像宽带运营商喜欢标 Mbps 而不是 MB),良好设计的齿轮,齿距误差为 0 的情况下,例如 1 模 30 齿的齿轮副,很容易做到扭矩误差 < 0.5%(角度误差 < 0.05度)。但如果有 5 微米(对的,不是 0.05 mm,是 0.005 mm)的齿距误差,扭矩误差就会超过 3%,然而 5 微米已经属于国标 5 级精度了,机械手用的精密减速机通常也只有 5 级精度。齿轮精度等级划分中,相邻两个精度等级一般只差 2~5 微米(依直径、模数而不同)。如何设计(无加工误差下)扭矩误差 < 0.5% 的齿轮?详情请参考:齿轮设计中如何选择模数?齿轮传动中,误差主要有三大来源(按照误差影响从小到大排序):设计误差。标准齿轮很容易达到 3% 以上的扭矩误差,非标齿轮基本能消除因齿轮设计导致的误差(扭矩误差 < 0.1%)。摩擦力。不同工况下,齿面间的摩擦系数是不同的,例如钢-钢接触,有润滑条件下,摩擦系数在 0.5~0.15 间波动。但优秀的齿轮设计同样也能消除摩擦力导致的误差(扭矩误差 < 0.1%),详情请参考:如何计算齿轮的摩擦损耗?和滑动系数/滑动率/滑动比/比滑有关吗?齿距误差。通常情况下,设计良好的齿轮如果扭矩误差 > 3%,则其中至少 3% 都是因为齿距误差造成的...齿轮副主要参数:基于 ISO 53:1998轮廓A 齿形、1 模 45 齿、齿厚 7 mm、齿顶高系数 1.2、齿顶倒圆 0.15 mm、无变位、摩擦系数 0.1、输入扭矩 10 Nm。考虑 5 微米齿距误差,如果是直齿轮:输出扭矩的波动幅度为 0.16(9.78~9.94),波动率为 1.6%。如果是斜齿轮(20 度螺旋角):输出扭矩的波动幅度为 0.04(9.84~9.88),波动率为 0.4%。其实这对齿轮副已经设计得很好了,若没有齿距误差,直齿轮的输出扭矩波动率只有 0.3%:斜齿轮能更好地消除齿距误差对精度的影响,原理是摩擦力造成的扭矩波动更小,直齿轮啮合时是直线-直线接触,斜齿轮啮合时是曲线-曲线接触,因此摩擦力生效的原理不同。(篇幅考虑,不在此继续分析直齿轮和斜齿轮啮合的区别)相关内容推荐阅读无间隙/零背隙/消隙齿轮,有什么设计方案?齿轮设计中如何选择模数?什么是齿轮修形?如何计算齿轮的摩擦损耗?和滑动系数/滑动率/滑动比/比滑有关吗?塑料齿轮该用什么润滑油?后记最近写了很多与齿轮设计有关的回答,这篇回答是这个系列倒数第二篇,还有一篇(齿向修形)就完结了。