1. 荧光分光光度计常用的光源是氘灯
氘灯、钨灯、氙灯、汞灯、LED。
氘灯,D2 lamp, Deuterium Lamp – 低压气体放电光源
直流电弧使得氘气(D2)放电。高电压、热光源。发射波长范围110-900 nm。通常采用的是190-400nm的波段,因为在这一波段氘灯的发射光谱比较平滑连续,没有锐线谱。在500,600,650nm处有强烈的锐线发射,因此可见光区这一波段不宜选作光谱仪光源。氘灯的玻璃罩用特殊的紫外玻璃或者石英玻璃制作,以免普通玻璃对紫外光的吸收。即便如此,紫外玻璃的透射下线约190nm,石英玻璃大致在150nm。
钨灯,tungsten lamp。利用钨丝的热发射发光。为防止钨丝的氧化和蒸发,最初将灯泡内抽真空,后来充入惰性气体。此后发现若充入少量卤素(如碘、溴)可以通过卤-钨循环很大程度上改善钨丝的老化。目前的钨灯大多采用此结构,因此相应称为碘钨灯、溴钨灯或统称卤钨灯。
发射波长为300nm - 2.5um的广谱范围。通常用于紫外-可见光谱的可见光区光源。
氙灯,xenon lamp, or xenon arc lamp。Xe气体电弧放电发光。
氙灯的发射光谱稳定,随使用时间的延长改变较小,且光谱分布与自然光较为接近,波长范围为300-1100nm。氙灯在紫外光区的发射强度较低。因为氙灯发射光谱相对较为平滑,没有太多强烈的锐线发射,因此较为适用于以定量分析为目的的荧光光谱仪。氙灯中所充氙气气压大致在40-60大气压之间。使用寿命大致在1500-2000小时。
高压汞灯。Mercury lamp。汞蒸气电弧放电。
其发光强度较强,约为相同功率卤钨灯的几十倍。有大量的锐线发射峰,在这些波长处的发射强度就更大。使用寿命较短,通常只有200小时。
发光二极管。Light-emission diode, LED。半导体二极管,电子与空穴湮灭发光
单色性较上述白光源好得多,可以根据应用需要选择合适波长的LED光源。光谱带宽通常是50nm左右。光源稳定性优异,寿命可达数万小时。
2. 光学分析中,以氘灯作为光源的是
分光光度计采用一个可以产生多个波长的光源,通过系列分光装置,从而产生特定波长的光源,光线透过测试的样品后,部分光线被吸收,计算样品的吸光值,从而转化成样品的浓度。样品的吸光值与样品的浓度成正比。 单色光辐射穿过被测物质溶液时,被该物质吸收的量与该物质的浓度和液层的厚度(光路长度)成正比,其关系如下式: A=-lg(I/I。)=-lgT=kLc 式中 :A 为吸光度; I。为入射的单色光强度; I 为透射的单色光强度; T 为物质的透射率; k 为摩尔吸收系数; L 为被分析物质的光程,即比色皿的边长; c 为物质的浓度; 物质对光的选择性吸收波长,以及相应的吸收系数是该物质的物理常数。当已知某纯物质在一定条件下的吸收系数后可用同样条件将该供试品配成溶液,测定其吸收度,即可由上式计算出供试品中该物质的含量。在可见光区,除某些物质对光有吸收外,很多物质本身并没有吸收但可在一定条件下加入显色试剂或经过处理使其显色后再测定,故又称比色分析。由于显色时影响呈色深浅的因素较多,且常使用单色光纯度较差的仪器,故测定时应用标准品或对照品同时操作。 分光光度计原理是什么 在分光光度计中,将不同波长的光连续地照射到一定浓度的样品溶液时,便可得到与众不同波长相对应的吸收强度。如以波长(λ)为横坐标,吸收强度(A)为纵坐标,就可绘出该物质的吸收光谱曲线。利用该曲线进行物质定性、定量的分析方法,称为分光光度法,也称为吸收光谱法。用紫外光源测定无色物质的方法,称为紫外分光光度法;用可见光光源测定有色物质的方法,称为可见光光度法。它们与比色法一样,都以Beer-Lambert定律为基础。 近年来,紫外及可见光分光光度分析已得到广泛的应用,它不仅可以用于物质的鉴定及结构分析,而且还可以用于某些物质含量的测定。 分光光谱技术可用于: 通过测定某种物质吸收或发射光谱来确定该物质的组成。 通过测量适当波长的信号强度确定某种单独存在或与其他物质混合存在的一种物质的含量。 通过测量某一种底物消失或产物出现的量同时间的关系,追踪反应过程。 一、紫外及可见光分光光度法这是一种只在可见光及紫外光光谱应用范围内测量物质吸收辐射线的技术,应用十分广泛。其中分光光度计可用于精确测量特定波长的吸收值,而比色计则是一种较简单的测量仪器,其原理是利用虑光片来测量较宽波段(如可见光中的绿光、红光或蓝光范围)的吸收值。 光吸收法则: 溶液对光的吸收有两个基本法则: 透过溶液的光的吸收值同吸收溶质的分子数目(即溶质浓度[C])呈指数相关。 透过溶液的光的吸收值同透过吸收溶液的路径长度l成指数相关。 这两条法则包括在比尔-朗伯关系式中。通常以入射光(Io)和出射光(I)的光密度来表示: ε其中ε对于吸收物质及波长是一个常数,称为吸光系数或吸收系数,[C]的单位为mol/L或g/L,l的单位为ml.这一公式非常有用,因为大多数分光光度计设计为直接测量log10(Io/I)的值(A)或消光值(E)(旧教材中可能使用以废除的术语:光密度)。对于遵循比尔-朗伯关系的物质,A与C呈线性关系。吸收值常用下标表示其波长,如A550表示550nm处的吸收值。透过溶液的光的比例称为透光率(T),可由出射光和入射光的比值求得。 吸收值(A)(absorbance)--由公式得出: 透光率(T)(transmittance)--通常以百分数表示:T=(I/Io)×(一)比色计比色计用于测定颜色明显,并且是溶液主要组分的待测物,如血液中的血红细胞,也可以在待测物之中加入一种试剂,使其形成有色产物(一种生色团),如用茚三酮法测定氨基酸含量。定量分析某种物质要做标准曲线,标准曲线是在测定待测样品的同时测定已知含量的物质来制成的,而不是使用比尔-朗伯关系。 光源通常为钨丝灯泡,通过一个凸透镜聚焦后产生一束平行光,平行光穿过装有溶液的玻璃样品或小池,然后透过一个有色滤光片到达光电管检测仪,检测仪产生一个同落在光电管上的光密度成正比的电势,来自于光电管的信号被放大然后传递到电流计或数字读数器。 比色计的使用: ①接通电源使仪器稳定,使用前至少要让灯预热5min;② 选择一种同底物颜色互补的滤光器;③调零(用空白对照调零);④调整灵敏度;⑤分析样品及标准溶液;⑥由于不同比色杯的吸光特性、杯壁厚度不同,因此为了提高精确度,同一试验应用同一比色杯,且在比色槽中摆放的方位相同;⑦每次测样前清洗比色杯;⑧经常重复测定同一溶液检验比色计的可重复性;⑨用标准溶液绘制标准曲线。 由于大多数过滤器过滤出来的光的波带很宽,因而比色计既不能用于确定某种复合物,也无法分辨在混合液中吸收特性非常相近的两种物质。比色计所用光电管的变化系数为0.5%左右,因而不适合要求具有高度精确性的工作。使用这种最简单的仪器,由于仪表上对数测量刻度单位的随意性,即使是把表上的灵敏度/刻度调节到零控点,在一个仪器上获得的值不可直接同另一台仪器上测得的值相比较,同一仪器的不同设置之间也不可直接比较。比色计对于特定波长的量化工作是不合适的。 (二)紫外光/可见光分光光度计紫外光/可见光分光光度计基本装置中采用高强度的钨灯作为光源,能够在可见光范围(400~700nm)调节。氘灯用于紫外分光光度测量(200~400nm);使用氘灯时要用石英杯,因为紫外线不能透过玻璃。 分光光度计之所以优于比色计就在于使用了一个衍射光栅将光源的复色光转换为单色平行光束。实际上从这种单色一种产生的光不是某个波长的光,而是一段窄的带宽上的光,带宽是分光光度计的一个重要特性,这是由于它决定了吸收测量中所用的波长--普通分光光度计的带宽为5~10nm,用于研究的仪器的带宽小于因为光栅夹缝的宽度影响着带宽,带宽随光栅夹缝的宽度的减少而降低,要获得特定波长下的精确数据,尽可能使用最小的缝宽度。然而,减少了缝宽也会减少到达监测器的光度,降低了信/噪比。缝宽可减少的程度取决于检测/放大系统的灵敏度及稳定性于离散光的存在。 大多数UV/可见光分光光度计使用的比色杯的光穿过路径为10nm.一次性塑料杯适合于对水和乙醇溶液在可见光范围内的测量。玻璃比色杯的生产要求更加严格的标准,因而在精确研究中要使用玻璃比色杯,尤其当溶液的吸收值很低时(《0.1),即使盛对照液与待测样品液的比色杯在光学性质上有稍许不同,也会导致结果偏差。玻璃和塑料会吸收UV光,因此在测波长小于300nm的吸收值时要使用石英杯。 进行测量之前,比色杯要保证干净,无划痕,外表面干燥,盛液到适当高度,并放在了比色槽中的正确位置。生物样品中蛋白质和核酸可能会在玻璃/石英杯的内表面沉积,因而要用棉球沾上丙酮擦去比色杯内的沉淀或用1mol/L硝酸浸泡过夜。腐蚀性及毒性溶液必须使用有盖子的比色杯,以防止溅出,破坏仪器。 基本分光光度计使用的光电管类似于比色计中所使用的光电管。许多情况下,当波长高于和低于550~600nm时必须使用不同的光电管,这是因为它们在可见光波长内的灵敏度不同,更精彩的仪器中所使用的是具有比光电管更高的灵敏度和稳定性的检测器。数字显示由于不易产生视觉错误和误读范围的错误,正逐渐代替指针读数。一些仪器可以直接给出所测定物质的浓度。 。紫外光/可见光分光光度计的类型: 基本分光光度计只产生单束光。这种仪器首先用空白对照调到零吸收值,然后取出空白液,加入待测液,测定待测液的吸收值。也有一种双束分光光度计,有单色光源产生的光束被分为两束,一束穿过待测液,另一束穿过空白液。吸收值由一个电子线路通过对比透过待测液及空白液的出射光进行测定。双光束分光光度计减少了由于光源输出的不稳定或检测系统灵敏度的变化而导致的测量错误,这时由于待测液与对照液是同时进行测量的。记录式分光光度计是一种双束测定仪,用于记录已知波段下吸收值随时间的变化(如用于酶分析)。 分光光度计的定量分析: 假如已知一种物质在某一波长下的吸光率(通常是该物质的最大吸收值,这时灵敏度最高),这种物质纯溶液的浓度可用比尔-朗伯关系式算出。摩尔吸光系数是指物质在1mol/L的浓度下,比色杯厚度为1cm时的吸收值。该值可以从光谱数据表中查到,也可以用实验方法通过测量一系列已知浓度的物质的吸收值来绘制一条标准曲线。这样,在所要求的浓度范围内,便可确定吸收值与浓度之间存在的线性关系,该直线的斜率即为摩尔吸光系数。 比吸光率是指物质质量溶液浓度为10g/L时,比色杯厚度为1cm时测定的吸光值。该值对于未知分子质量的物质如蛋白质核酸的测定很有用,这种情况下溶液中物质的含量以其质量表示而不用摩尔浓度表示。使用公式Log10(Io/I)=εl[C]时,比吸光率要除以10才可以得到一个以g/L为单位的浓度值。 这种简单的方法不能用于测定混合样品。在这种情况下,也许可以通过测量几个波长下的吸光度来估算每种成分的含量,如可用此方法在核酸存在下进行蛋白质含量的估算.
3. 分光光度计钨灯和氘灯
氘灯,紫外线光源,它发出的光的波长范围一般为190~400nm的连续光谱带。氘灯广泛应用于液相色谱仪的UV检测器,UV-VIS分光光度计,电泳仪,SOx/NOx分析仪,血液检查等多种分析测试仪器中。
氙灯,利用氙(xian)气放电而发光的电光源。由于灯内放电物质是惰性气体氙气,其激发电位和电离电位相差较小。
不少光谱分析仪器使用氙灯来提供紫外和可见光区域能量,替换氘灯和钨灯的双灯组合,这样理论上可以减少一个灯、一个反射透镜和一个伺伏电机;
从技术指标上来分析,两者差异还是很大的;
(1)光谱带指标:
氘灯:常用180-350nm;
卤钨灯:常用350-2000nm;
氙灯:常用250-700nm;
常用的紫外-可见光分析区域是190-1100nm;
(2)电压
氙灯的功率为150瓦;氘灯启动功率为100瓦,也有说300瓦,工作功率为35瓦;
(3)寿命
氘灯:使用需要预热,厂家一般保证500小时,实际使用寿命1000-2000小时;
氙灯:由于是冷光源,使用无需预热,实际使用寿命约4000~5000小时,我们一台设备用了5年没有坏过。但是有资料说氙灯强烈的紫外线会导致光室随着使用时间延长光路快速的老化。
4. 荧光分光光度计的主要激发光源是什么
荧光光度计主要原理依据是:激发光照射待测荧光物质发出荧光,经过放大器至记录仪,记录仪得出的信号即为样品溶液的荧光强度。本文主要介绍了RF-5301PC型荧光分光光度计 的工作原理、操作规程以及注意事项等。
仪器设备 编号、名称
仪器设备 名称:荧光分光光度计
型 号:RF-5301PC型
国 别 厂 家:日本岛津公司
工作原理
荧光产生的原理
荧光的定义:某些物质受紫外光或可见光照射激发后能发射出比激发光波长较长的光。
荧光产生的原理:化学物质能从外界吸收并储存能量(如光能、化学能等)而进入激发态,当其从激发态再回复到基态时,过剩的能量可以电磁辐射的形式放射(即发光)。
5. 荧光分光光度计的组成包括
分光光度计,又称光谱仪(spectrometer),是将成分复杂的光,分解为光谱线的科学仪器。测量范围一般包括波长范围为380~780 nm的可见光区和波长范围为200~380 nm的紫外光区。不同的光源都有其特有的发射光谱,因此可采用不同的发光体作为仪器的光源。
钨灯的发射光谱:钨灯光源所发出的380~780nm波长的光谱光通过三棱镜折射后,可得到由红、橙、黄、绿、蓝、靛、紫组成的连续色谱;该色谱可作为可见光分光光度计的光源。
6. 分光光度计测定里面,钨灯与氘灯的作用
1、原理不同:
(1)紫外分光光度计,就是根据物质的吸收光谱研究物质的成分、结构和物质间相互作用的有效手段。
(2)荧光分光光度法是根据物质的荧光谱线位置及其强度进行物质鉴定和含量测定。可根据不同的物质其组成与结构调整所吸收的紫外-可见光波长和发射光的波长。
2、应用范围不同:
(1)紫外分光光度计主要用于实验室。例如:鉴定物质:根据吸收光谱图上的一些特征吸收,特别是最大吸收波长λmax和摩尔吸收系数ε是检定物质的常用物理参数。这在药物分析上就有着很广泛的应用。与标准物及标准图谱对照等。
(2)荧光分光光度法的灵敏度通常比分光光度法高2〜3个数量级。在卫生检验、环境及食品分析、药物分析、生化和临床检测等方面有着广泛的应用。
3、所用灯不同:
(1)紫外光区通常用氢灯或氘灯。
(2)荧光分光光度法通常用钨灯或卤钨灯。
4、优缺点:
(1)紫外分光光度计高自动化程度,维护方便、操作简便、效率高。
(2)荧光分光光度法具有检测灵敏度高、专属性较强和使用简便等特点,常用于微量甚至痕量毒物的定量分析。
7. 荧光分光光度计常用的光源有
荧光测定需要单色性较高的激发光,通常会在光束进入样品之前经单色器分光,保留所感兴趣的激发波长或波段。
较常见的单色器为棱镜或是光栅,在一些简易的荧光系统中也可使用滤波片。在该系统中,由激发光源发出的光经激发单色器分光获得特定波长的激发光,然后射入样品池,激发荧光物质的荧光发射。
荧光分光光度计与荧光光度计的区别在于两者之间的分光系统,前者可以采用色散型单色器,可对入射和发射光波长进行选择,可进行入射/ 发射波长扫描,多见于大型通用仪器;后者采用滤光片,具有固定的光谱通带,一般用于专用仪器中。
8. 荧光分光光度计的光源一般为
因为荧光是属于由一种某波长的光来激发样品后样品再发出的光,一般来说,样品发出的荧光是很弱的,如果这时候的光路路线和其他像紫外可见或者可见分光光度计一样的话,接收器接收到的光信号基本上是激发光被样品吸收后的信号了,这是因为荧光已经被淹没在激发光了面了。
为了解决这个问题,最好的做法就是把接收器放在与激发光方向两侧,与激发光方向垂直的方向来接收荧光,这样就可以大大的降低激发光对荧光的影响了。