双关节机械臂(平面关节型机械臂)

海潮机械 2023-01-24 13:33 编辑:admin 289阅读

1. 平面关节型机械臂

中国空间站天和核心舱携带的空间大型机械臂。天和核心舱作为空间站组合体的“中枢系统”,拥有众多强大的功能,而能力堪比“变形金刚”的空间站机械臂,更让核心舱如虎添翼。具体展开前,除了辅助航天员出舱活动,我们先了解一下这个机械臂还能干什么?

舱表爬行转移

这个核心舱机械臂的设计灵感来自于蠕虫爬行,绝对是脑洞大开,用类似于木工常用的榫卯结构,就可以和空间站外侧预留的对接点(专业术语叫适配器)实现对接和分离,实现了舱体外爬行功能,这样就能在空间站各舱体外表面活动范围大大增加,别人没有,我们独此一份。因为目前在轨运行的国际空间站虽然有多个机械臂,但都是固定的。

2. 关节式机械臂

机械臂关节数:  6关节机械臂

工作半径:  1300 mm

自量: 28.9 kg

负载重量: 10 kg

工作范围: +/- 360° 

工作速度:  120/180°/s 

TCP速度:  1 m/s

重复精度: +/- 0,1 mm

6 旋转关节控制器大小(宽x高x长): 475 mm x 423 mm x 268 mm

机械臂能操作在温度范围:  0-50°C

电源供应器: 100-240 VAC 50-60 Hz预期运行寿命: 35,000 小时

3. 机械臂关节坐标系

机械手主要由执行机构、驱动机构和控制系统三大部分组成。手部是用来抓持工件(或工具)的部件,根据被抓持物件的形状、尺寸、重量、材料和作业要求而有多种结构形式,如夹持型、托持型和吸附型等。运动机构,使手部完成各种转动(摆动)、移动或复合运动来实现规定的动作,改变被抓持物件的位置和姿势。运动机构的升降、伸缩、旋转等独立运动方式,称为机械手的自由度。

为了抓取空间中任意位置和方位的物体,需有6个自由度。自由度是机械手设计的关键参数。自由度越多,机械手的灵活性越大,通用性越广,其结构也越复杂。一般专用机械手有2~3个自由度。控制系统是通过对机械手每个自由度的电机的控制,来完成特定动作。同时接收传感器反馈的信息,形成稳定的闭环控制。控制系统的核心通常是由单片机或dsp等微控制芯片构成,通过对其编程实现所要功能。

一、执行机构

机械手的执行机构分为手部、手臂、躯干;

1、手部

手部安装在手臂的前端。手臂的内孔中装有传动轴,可把运用传给手腕,以转动、伸曲手腕、开闭手指。

机械手手部的构造系模仿人的手指,分为无关节、固定关节和自由关节3种。手指的数量又可分为二指、三指、四指等,其中以二指用的最多。可根据夹持对象的形状和大小配备多种形状和大小的夹头以适应操作的需要。所谓没有手指的手部,一般都是指真空吸盘或磁性吸盘。

2、手臂

手臂的作用是引导手指准确地抓住工件,并运送到所需的位置上。为了使机械手能够正确地工作,手臂的3个自由度都要精确地定位。

3、躯干躯干是安装手臂、动力源和各种执行机构的支架。

二、驱动机构

机械手所用的驱动机构主要有4种:液压驱动、气压驱动、电气驱动和机械驱动。其中以液压驱动、气压驱动用得最多。

1、液压驱动式

液压驱动式机械手通常由液动机(各种油缸、油马达)、伺服阀、油泵、油箱等组成驱动系统,由驱动机械手执行机构进行工作。通常它的具有很大的抓举能力(高达几百千克以上),其特点是结构紧凑、动作平稳、耐冲击、耐震动、防爆性好,但液压元件要求有较高的制造精度和密封性能,否则漏油将污染环境。

2、气压驱动式

其驱动系统通常由气缸、气阀、气罐和空压机组成,其特点是气源方便、动作迅速、结构简单、造价较低、维修方便。但难以进行速度控制,气压不可太高,故抓举能力较低。

3、电气驱动式电力驱动是机械手使用得最多的一种驱动方式。其特点是电源方便,响应快,驱动力较大(关节型的持重已达400kg),信号检测、传动、处理方便,并可采用多种灵活的控制方案。驱动电机一般采用步进电机,直流伺服电机(AC)为主要的驱动方式。由于电机速度高,通常须采用减速机构(如谐波传动、RV摆线针轮传动、齿轮传动、螺旋传动和多杆机构等)。有些机械手已开始采用无减速机构的大转矩、低转速电机进行直接驱动(DD)这既可使机构简化,又可提高控制精度。

4、机械驱动式

机械驱动只用于动作固定的场合。一般用凸轮连杆机构来实现规定的动作。其特点是动作确实可靠,工作速度高,成本低,但不易于调整。其他还有采用混合驱动,即液-气或电-液混合驱动。

三、控制系统

机械手控制的要素包括工作顺序、到达位置、动作时间、运动速度、加减速度等。机械手的控制分为点位控制和连续轨迹控制两种。

控制系统可根据动作的要求,设计采用数字顺序控制。它首先要编制程序加以存储,然后再根据规定的程序,控制机械手进行工作程序的存储方式有分离存储和集中存储两种。分离存储是将各种控制因素的信息分别存储于两种以上的存储装置中,如顺序信息存储于插销板、凸轮转鼓、穿孔带内;位置信息存储于时间继电器、定速回转鼓等;集中存储是将各种控制因素的信息全部存储于一种存储装置内,如磁带、磁鼓等。这种方式使用于顺序、位置、时间、速度等必须同时控制的场合,即连续控制的情况下使用。

其中插销板使用于需要迅速改变程序的场合。换一种程序只需抽换一种插销板限可,而同一插件又可以反复使用;穿孔带容纳的程序长度可不受限制,但如果发生错误时就要全部更换;穿孔卡的信息容量有限,但便于更换、保存,可重复使用;磁蕊和磁鼓仅适用于存储容量较大的场合。至于选择哪一种控制元件,则根据动作的复杂程序和精确程序来确定。对动作复杂的机械手,采用求教再现型控制系统。更复杂的机械手采用数字控制系统、小型计算机或微处理机控制的系统。控制系统以插销板用的最多,其次是凸轮转鼓。它装有许多凸轮,每一个凸轮分配给一个运动轴,转鼓运动一周便完成一个循环。

4. 机械手臂关节

首先建立机械手臂各个关节的位姿坐标,一般用矩阵描述,然后通过雅克比矩阵对各个位姿进行转换,求出串联机械手的刚度矩阵,如果用视教方法,要对各个点的数据点进行记录,然后通过记录值在分别控制各个关节运动,达到理想位姿,如果采用自适应控制可能比较麻烦,多学习一些自适应控制理论,模糊算法,可能有用。

5. 机械臂关节结构图

如果您仔细观察我们自己的手臂,可以猜出来有几个自由度吗?答案是7个,是的,正与空间站机械臂一样。所以说,空间站机械臂正是对人类手臂的仿生还原,只是又集合了机械工程、力学、材料科学、控制科学、电子科学、信息、视觉、计算机科学等多学科交叉的战略性高技术。

它具有明亮的眼睛——视觉系统,具有触觉神经——也就是末端执行器上面的好多传感器,具有头部和尾部——末端执行器,还具有灵活的关节。机械臂拥有精确操作能力和视觉识别能力,既具有自主分析能力,也可以由航天员进行遥控。

6. 关节型机械臂结构设计

如果是机械手 建议用伺服电机,液压马达主要用以工程机械上的机械臂 液压马达比较好 ,因为本机就有系统 液压马达 体积小扭矩达

7. 机械臂的关节角度的范围

1.通过最大水平距离来计算。

所谓最大水平距离,是指吊车臂杆在正常吊装的作业前提下,吊钩伸入吊物方向的水平距离。总的来说,就是吊车臂杆下轴至吊钩的水平距离,最大水平距离smax可以通过施工现场实际情况确定的吊车站位和设备的基础位置、容器摆放的位置等方法来确定。cosa=smax/l(1)a=arccos(smax/l)(2)公式中:

a:最大水平距离吊装条件下的吊装角度,smax:最大水平距离,

通过容器重量和最大水平距离初步选定吊车,测量出吊车的臂长l,通过计算公式式(2)计算出最大水平距离吊装条件下的吊装角度a,根据a、smax对照初选出来吊车的机械性能表,核对吊车载荷重量口,当吊车起重性能表上的起重量g

2.通过最大起吊高度的计算。

在实际的应用中,要受到现场环境的影响,往往吊车的最大吊装高度会受到限制,臂杆与水平面成一定角度时,才会得到吊车的最大吊装高度,当满足吊装水平距离时,吊钩能达到的最大高度,可得以下公式:hmax=h1+h2(3)hl=lsina(4)

a=arcsin(h1/l).(5)s=lcosa(6)公式中:

hmax:为最大起吊高度;

h1:吊车臂杆滑轮组定滑轮至吊臂下轴的距离;h2:为吊臂下轴至地面的距离;l:吊臂长度;a::为吊装角度;s:水平吊装距离。

当最大吊装高度受到限制的时侯,hmax是个已知量。初步选定吊车,l也为已知量,通过公式(3)一(6),可得出出吊装角度a和水平距离s,根据a、s对照初选吊车的机械性能表,核对吊车载荷重量g,

当起重量q

3.吊车载荷的确定。

因为吊车司机在吊装过程中的配合存在着差异,因此不论吊装施工如何的精心指挥,都会出现两台吊车操作速度不同步的现象,进而引起偏吊,吊钩偏角,最终使得两台吊车对吊装载荷的分配量不平均,在确定吊车载荷的时候,必须要考虑载荷不平均系数,这个所谓的不均衡系数,可以通过吊装手册查到。当不均衡系数:k=1.1时,吊车载荷为:q=kq0(7)

公式中:q:吊车载荷,k:不均衡系数,

q0:单台吊车所分担的设备重量。

8. 关节柔性机械臂

2008年,陈小平选择家庭服务机器人为长期研究目标,进入自主创新阶段。最初,团队在机器人移动底盘上加装了一款进口的机械手臂,但发现手臂太短,且存在安全性、灵活性不足等问题。

团队尝试自己做一款手臂。他们研发了一款刚性机械臂,每个关节上有一套电机、减速器、控制器。但重量和成本都很高,一台机器人成本至少30万元。

“我们决定研发一种更灵活、更安全、更轻的柔性手臂。”陈小平回忆,当时论文和书本里都找不到相关案例,只能从零开始。

经过无数次尝试,2013年,他们终于发现气动蜂巢结构可以满足相关特性。但这种结构在现实世界中并不存在,只能自己手工制作。最初,团队造出的手臂十分简陋,只能“动一动”,没法完成更复杂的动作。

2014年,陈小平扩大了实验室软体机器人组规模,团队成员不断改进控制算法,相继攻克手臂抖动等技术难题。

2016年,团队研发的气动蜂巢网络软体执行器可实现三维空间内对不规则物体的操纵。2017年,陈小平在团队增设柔性手爪研究组,自主研发了刚柔合一的机器人柔性手爪,可抓握多种形状、尺寸和材质的物体,突破了刚性手爪的局限性。

据悉,服务机器人技术在智能制造、医疗康复,家庭服务等领域有巨大研究价值和广泛应用前景。比如,让机器人为不同形状的产品进行表面打磨;对高铁、动车、地铁车厢进行无死角喷涂;或是给卧床的老人喂饭。