1. 机械臂关节结构设计
机械臂的长度1米至15米。
机械臂又名机器人手臂通常指一种可编程的,具有与人类手臂相似功能的机械臂;该臂可以是一个完整的机械装置,也可以是更复杂的机器人的一部分。这种机械手通过关节连接使其可以完成旋转运动(例如在关节机器人中)或平移(线性)运动。机械手通过各个关节的连接最终形成了一个运动链。机械手运动链的末端被称为末端执行器,它类似于人的手。
2. 机械臂旋转关节结构
机械臂关节数: 6关节机械臂
工作半径: 1300 mm
自量: 28.9 kg
负载重量: 10 kg
工作范围: +/- 360°
工作速度: 120/180°/s
TCP速度: 1 m/s
重复精度: +/- 0,1 mm
6 旋转关节控制器大小(宽x高x长): 475 mm x 423 mm x 268 mm
机械臂能操作在温度范围: 0-50°C
电源供应器: 100-240 VAC 50-60 Hz预期运行寿命: 35,000 小时
3. 机械臂关节结构设计规范
机械手臂根据结构形式的不同分为多关节机械手臂,直角坐标系机械手臂,球坐标系机械手臂,极坐标机械手臂,柱坐标机械手臂等。
水平多关节机械手臂一般有三个主自由度,Z1转动,Z2转动,Z移动。通过在执行终端加装X转动,Y转动可以到达空间内的任何坐标点。直角坐标系机械手臂有三个主自由度。X移动,Y移动,Z移动组成,通过在执行终端加装X转动,Y转动,Z转动可以到达空间内的任何坐标点。
从驱动上来讲,主要采用的是液压驱动,即采用液压缸来驱动手臂运动。也可采用气动、电机传动等形式。
下面针对不同类型的机械臂,了解一下它们的自由度结构。
1、太空机械臂
以太空机械臂为例,一般它分为舱内机械臂和舱外机械臂两大类。一般舱内机械臂尺寸不大。对于舱外机械臂而言,一般从几米到几十米。针对不同的任务需求,自由度从5个到10个不等。通过利用机械臂的定位功能,通过不同形势手爪的使用,可以完成对于航天器舱内和舱外不同目标的拾取、搬运、定位和释放。
2、工业机器人机械臂
在工业机器人领域,设计中一般采取6个自由度。前三个自由度用来确定位置,后三个来确定姿态,实现机械臂的控制。6个自由度分别为:沿x轴平移,沿y轴平移,沿z轴平移,绕x轴转动,绕y轴转动,绕z轴转动。
一个基准面与工件底面重合,限制了工件沿z轴平移,绕x轴转动,绕y轴转动3个自由度;
二个基准面又与工件后侧面重合,限制了工件沿x轴移动,绕z轴转动2个自由度;
三基准面与工件另一个侧面重合,就把剩下的最后一个自由度:沿y轴移动限制了。
3、手术机器人机械臂
在医疗领域,不同于普通机器人机械臂,手术机器人的机械臂往往需要很高的精度。手术机器人的机械臂运动过程中,机械臂必须实现平稳顺滑,能够快速响应指令。一般手术机器人结构需要根据手术环境来调整,这样才能满足手术的不同要求。
达芬奇外科手术机器人的系统中的每一个机械臂具有7个自由度。其中,每个微器械具有独立的4个自由度,机械臂提供3个自由度,这样器械末端具有7个自由度。整体来说,其具有很高的灵活性。
一般来说,随着机械臂的自由度增加,运动灵活性会增加。但是,自由度却并非越高越好。一般的专用机械手只有2~4个自由度,而通用机械手则多数为3~6个自由度(不包手指的抓取动作)。
4. 关节型机械臂结构设计
结构区别:五轴机械手臂有五个轴,也就是有五个关节,一般有三个关节可以绕着水平面内自由旋转,进行定位和定向,第三个关节是由一根金属杆和执行器组合,金属杆可以在垂直平面内上下移动或者绕其垂直轴进行旋转,但不能倾斜,还有一个关节是左右移动的,可以让执行器完成垂直面的直线运动。六轴机械手臂比四轴机械手臂多两个关节,第一个关节可以像五轴机械手臂一样在水平面自由旋转,后两个关节可以在垂直面运动,另外,六轴机械手臂还有一个“手臂”和两个“腕”关节,这给了它类似于人手臂和手腕的能力。
六轴机械手臂
应用区别:与六轴机械手臂相对比,五轴机械手臂有着高速地取放能力,而六轴机械手臂则在生产运动的灵活性方面表现更为显著。所以五轴机械手臂用于装配任务,也可适用于组装、包装以及轻型码垛等,因为大多数码垛的过程只需要上下运动,故而不需要有额外的轴,可以实现更快,更高效的提升。六轴机械手臂几乎可以应用于任何自动化的制造加工,如焊接、喷漆、装配以及材料的处理和去除等,随着科技的进步,六轴机械手臂还可以实现更加复杂的工作过程,如检查和3D打印等。
5. 机械臂关节结构设计方案
主要由手部、运动机构和控制系统三大部分组成。 手部是用来抓持工件(或工具)的部件,根据被抓持物件的形状、尺寸、重量、材料和作业要求而有多种结构形式,如夹持型、托持型和吸附型等。 运动机构,使手部完成各种转动(摆动)、移动或复合运动来实现规定的动作,改变被抓持物件的位置和姿势。 运动机构的升降、伸缩、旋转等独立运动方式,称为 的自由度 。为了抓取空间中任意位置和方位的物体,需有6个自由度。自由度是机 械手设计的关 键参数。自由 度越多, 的灵活性越大,通用性越广,其结构也越复杂。一般专用机械手有2~3个自由度。 控制系统是通过对机械手每个自由度的电机的控制,来完成特定动作。同时接收传感器反馈的信息,形成稳定的 。控制系统的核心通常是由单片机或dsp等微控制芯片构成,通过对其编程实现所要功能。
6. 机械臂关节结构图
机械臂是指高精度,多输入多输出、高度非线性、强耦合的复杂系统。因其独特的操作灵活性,已在工业装配、安全防爆等领域得到广泛应用。
机械臂是一个复杂系统,存在着参数摄动、外界干扰及未建模动态等不确定性。因而机械臂的建模模型也存在着不确定性,对于不同的任务,需要规划机械臂关节空间的运动轨迹,从而级联构成末端位姿
7. 关节型机械臂
中国天宫空间站天和核心舱的小柱段底部就安装了一条这样的机械臂,它的展开长度达10.2米、有2段长的臂杆和7个活动关节,具备7个自由度,甚至比人的胳膊还灵活;机械臂自身质量为738千克,却能承载25吨重的物体,因此被许多网友尊为“牛臂”。
“牛臂”之牛绝不只体现在“大力出奇迹”上,中国机械臂不仅能扳动几十吨重的实验舱、辅助航天员太空行走,它还能根据任务要求全自动地在空间站外“爬行”转移,抵达空间站的任何位置完成工作。
空间站机械臂的“爬行”动作很像一种飞蛾的幼虫尺蠖[chǐ huò],尺蠖在爬行的时候先是尽量伸长躯体、固定前足、弓起身体后足着地、然后再伸展身体,如此往复。凭借这一技能尺蠖可以爬得很快,至少比其它大多数毛毛虫要快许多。
与其说机械臂在太空移动是借鉴了尺蠖爬行的仿生学原理,倒不如说它更像一个两条腿的分规。你需要先将一条腿“钉”在地板上再移动另一条腿去寻找下一个支点。
机械臂的支点在哪里呢?它就是空间站表面事先安装好的“锚点”,中国空间站表面的“锚点”被称作适配器。机械臂的每一次移动都需要先找到适配器的位置,将插头连接到适配器上,再松开另一个插头往前“走”。