1. 导杆齿轮齿条机构的使用场合
利用连杆机构、齿轮齿条,利用齿轮的啮合,一次外啮合换一次向,两次外啮合,输入输出同向.一次外啮合一次内啮合,输入输出反向.
2. 齿轮齿条机构应用实例
不会,结构中齿轮和齿条、齿轮和齿轮,应用在一些标准件中例如:减速机、导轨齿条、齿轮箱(一些提升机构中应用:如桁架机械手,汽车制造行业)等等。齿轮种类有:直齿轮 斜齿轮 人字齿轮 齿条 内齿轮。我们这次以斜齿齿轮齿条啮合聊一下它们的设计参数,斜齿和直齿的区别在于,斜齿有螺旋角,螺旋角为19°31′42″约等于19.5283°。
正因为有了螺旋角斜齿啮合传动时,一齿结束另一齿就又参与在啮合中,是循序渐进的啮合传动,因此,斜齿相对于直齿而言传动更加平稳,噪音也相对较小,传动扭矩更大(相同齿数模数下)但加工成本相对于直齿要高,加工难度也会提高,参数设置比较多。
3. 导杆齿轮齿条机构的使用场合是
45号钢通常在调质或正火状态下使用,可代替渗碳钢,用于制造表面耐磨的零件,此时,须经过高频感应或者火焰淬火,如曲轴、齿轮、机床主轴、活塞销、传动轴等,还用于制造农机中等负荷的轴、脱粒滚筒、凹板钉齿、链轮、齿轮以及钳工工具等。常用中碳调质结构钢。该钢冷塑性一般,退火、正火比调质时要稍好,具有较高的强度和较好的切削加工性,经适当的热处理以后可获得一定的韧性、塑性和耐磨性,材料来源方便。适合于氢焊和氩弧焊,不太适合于气焊。焊前需预热,焊后应进行去应力退火。
正火可改善硬度小于160HBS毛坯的切削性能。该钢经调质处理后,其综合力学性能要优化于其他中碳结构钢,但该钢淬透性较低,水中临界淬透直径为12~17mm,水淬时有开裂倾向。当直径大于80mm时,经调质或正火后,其力学性能相近,对中、小型模具零件进行调质处理后可获得较高的强度和韧性,而大型零件,则以正火处理为宜,所以,此钢通常在调质或正火状态下使用。
4. 导杆齿轮齿条机构的使用场合为
谢邀!
把转动变成直线运动的机构有很多:曲柄滑块机构,凸轮机构,连杆机构,偏心轮,滚珠丝杠等。你提的这个也可以使用齿轮齿条结构,是要求沿轴向做前后运动吧?那么可以先将输出轴安装一个圆锥齿轮,然后与之配套啮合另外一个圆锥齿轮,这对齿轮用于改变转动方向,再在后者齿轮同轴安装一个圆柱齿轮,与圆柱齿轮啮合一个齿条,实现轴向运动。改变电机转向即可改变齿条运动方向。
5. 齿轮与齿杆的配合
正确装配柴油发动机的正时齿轮。是保证柴油发动机修理过程中的一个重要环节。现将有关正时齿轮装配问题介绍于后:
1.记号不清或无记号的正时齿轮装配 柴油发动机的配气相位是由制造厂规定的,制造厂在定好配气相位后,便在正时齿轮、凸轮轴齿轮等传动齿轮的轮齿上标以记号,目的是使机修工在今后维修柴油发动机时能正确地进行重新装配。因此,正时齿轮的安装必须按有关标记进行。以保证正确的配气相位。 如果正时齿轮上的配气记号模糊不清或错乱,但是知道该柴油发动机进、排气门的开闭相位角度时。可采取以下述方法进行安装:
1)将凸轮轴和曲轴脱开;
2)使第一缸活塞位于上止点; 3)一般进气门都是提前开启的。所以要根据此角度计算飞轮逆时针回转的弧长,即:式中L—飞轮回转的弧长,mm D—飞轮直径。mm a—进气门提前开启角 4)转动飞轮,使飞轮上的进气门提前角的标记和飞轮壳上的上止点标记重合,这正好是进气门刚打开的位置: 5)转动凸轮轴,使第一缸的进气门杆和挺杆接触。装上正时齿轮。这时曲轴和凸轮轴之间的正时齿轮的相对位置就符合配气要求了。 如果由于种种原因。不知道该柴油发动机进、排气门的开启提前角度数值。则还可采取以下述方法使它们啮合准确。 将第一缸活塞转至上止点位置(靠近正时齿轮处的一缸为第一缸),然后将传动齿轮取出。使齿轮与齿轮之间处于不啮合状态。在此条件下再转动凸轮轴齿轮,使第一缸的进、排气凸轮顶点都向上或都向下,两点凸轮的轮廓线形成一种水平线,使之成为“上八字”(即相当于进气门刚开和排气门刚关闭的位置)或“下八字”形状。 由于在装配时常将气缸体倒置,此时俯视第一缸的两只凸轮顶点应成水平方向.这是因为在通常情况下,同一缸的进气凸轮与排气凸轮所成的角度约在110°~120°之间。 保持上述位置后.再重新将传动齿轮装上,使凸轮轴齿轮与传动齿轮及传动齿轮与曲轴齿轮之间处于啮合状态,这样,就保证了配气正时的准确。考虑今后维修时的需要,此时还应在齿轮与齿端啮合的位置处。用冲子标注出适当的记号。 2.正时齿轮是否装错牙的迅速判断法下述方法可简便地直接检查出柴油发动机配气相位是否正确,即能迅速判断正时齿轮是否装错了牙齿。具体方法是: 1)首先调整好气门间隙,以减少测量误差: 2)确定第一缸位于排气终了活塞上止点位置,同时在飞轮上标注第一个记号: 3)反转曲轴,使第一缸进气门处于关闭状态为止。此时在进气门杆和气门摇臂头之间放置小于0.05mm的塞尺。然后慢慢地正转曲轴,在塞尺刚被压住之时(意味着气门间隙消失、气门刚要打开)。在飞轮上标注第二个记号: 4)测量两记号间的弧长,通过转换,即可得出相应的进气门开启提前角度: 5)将实测弧长和标准弧长相比较,就可确定配气相位是否正确; 标准孤长:式中D—飞轮直径。mm a—柴油发动机规定的进气门提前开启角度弧长允许的偏差:式中Z—曲轴正时齿轮的齿数 6)测得的弧长若大于允许范围,说明进气门开启提前角过大。配气相位须逆着旋转方向位移;测得的弧长若小于允许范围,则说明进气门开启提前角过小,配气相位须顺着旋转方向位移。 配气相位一般只要检查第一缸进气门开启提前角即可,这是因为第一缸与其它气缸之间的关系是固定的,故无需检查其它缸的配气相位。此法与用仪表(如角度仪百分表)检查相位比较,其误差不大。 如果测试中。因某种原因不便在飞轮上做记号.以东风EQ1090E柴油发动机为例,则可改在风扇传动皮带轮上标注。但必须注意。在计算标准弧长及弧长允许的偏差公式中,D应相应地地改为风扇传动皮带轮的直径。 若在现场维修身边没有资料和技术数据时。则也可通过以下办法进行配气相位的测试检查: 先将第一缸活塞转至上止点:再将飞轮来回转动几次,每次转动的弧长约在150mm左右。与此同时观察该缸的进、排气门是否都会有上下移动现象。如果没有移动。再将飞轮转动一周,仍回到上止点。再注意观察察进、排气门是否会上下移动。在配气相位正确的情况下。以6135柴油发动机为例。在这两次动作中,必然有一次会使进、排气门上下移动。否则。说明正时齿轮装错了牙齿。
6. 齿轮杆是什么机构?
连杆机构的特点是构件运动形式多样,如可实现转动、摆动、移动和平面或空间复杂运动,从而可用于实现已知运动规律和已知轨迹。此外,低副面接触的结构使连杆机构具有以下一些优点:运动副单位面积所受压力较小,且面接触便于润滑,故磨损减小;制造方便,易获得较高的精度;两构件之间的接触是靠本身的几何封闭来维系的,它不象凸轮机构有时需利用弹簧等力封闭来保持接触。因此,平面连杆机构广泛应用于各种机械、仪表和机电产品中。平面连杆机构的缺点是:一般情况下,只能近似实现给定的运动规律或运动轨迹,且设计较为复杂;当给定的运动要求较多或较复杂时,需要的构件数和运动副数往往较多,这样就使机构结构复杂,工作效率降低,不仅发生自锁的可能性增加,而且机构运动规律对制造、安装误差的敏感性增加;机构中作复杂运动和作往复运动的构件所产生的惯性力难以平衡,在高速时将引起较大的振动和动载荷,故连杆机构常用于速度较低的场合。
凸轮机构的特点是结构简单、紧凑、设计方便,可实现从动件任意预期运动,因此在机床、纺织机械、轻工机械、印刷机械、机电一体化装配中大量应用。 缺点:1)点、线接触易磨损; 2)凸轮轮廓加工困难;3)行程不大
齿轮机构的特点是结构紧凑、工作可靠、传动平稳、效率高、寿命长、能保证恒定的传动比,而且其传递的功率和适用的速度范围大。齿轮机构两齿轮啮合,轮齿是逐渐进入接触,逐渐脱离接触。由于同时啮合的齿数比直齿多,每个齿的单位面积受到的压力小,传动比直齿平稳传力较大,适用于高速大功率。故齿轮机构广泛用于机械传动中。但是齿轮机构的制造安装费用高、低精度齿轮传动的噪声大。