松下伺服电机用减速器(松下伺服电机用减速器怎么调)

海潮机械 2023-01-29 22:09 编辑:admin 148阅读

1. 松下伺服电机用减速器怎么调

电子齿轮比设置有问题(误差累积)

需要根据伺服手册相关章节算电子齿轮比

若是圆周运动

需要知道输出轴一周多少个脉冲,(不是伺服电机脉冲数,一般带有减速器),比如伺服电机1圈10000个脉冲,减速器减速比1:30,也就是伺服电机转30圈,转盘转1圈,及需要PLC发脉冲数30*10000,

触摸屏中输入的角度或圈数,PLC内部转化成脉冲数,

我做过三轴往复机,下面转盘就是这种控制方式,只要是360度的整数倍都会压中原点。有问题可以联系我

祝你成功

2. 松下伺服电机用减速器怎么调试

如果您要拆装的是R系列减速机的话,因为R系列减速机是同轴减速机,他的内部可能装有一组或者是两组齿轮在里面,此时他的尺寸不能直接从输出轴的地方拿出来。那么应该怎么才能把他开拆除呢?用VEMT减速机的R斜齿轮减速机机子来说,此时如果想拿出内部齿轮的话,先需要打开上面的端盖,然后将轴取出之后才能将里面的大小齿轮分别拆出来。如果减速机是与电机形成直联减速机的话,此时就需要先将电机减速机分开,而有的用户说电机减速机分不开,此时有可能是减速机的键槽与电机的键紧紧连接在一起,或者是内部有个小齿轮啮合在一起,这两种情况都是不好处理的,所以在这样的情况下需要通过工具去敲打减速机与电机的连接部位来使得他们分开,松开的前提是将法兰盘的几个螺丝拧开之后才可以进行下一步。

而F系列减速机的话,他的盖面在底下的那一面,在分体式减速机中,需要先将底面的几个螺丝松开,然后才能看到内部的齿轮排布,不同的型号不同的减速比他的内部的齿轮组数量可能不一样,所以在这样的情况下可以看看减速机有多少组齿轮然后对应进行拆。无论怎么样在这么小的一个空间内齿轮与轴都不能同时在低面的端面出来,所以必须想办法将 齿轮与轴分开之后才能将尺寸从端面取出,而轴则是可以从轴承的位置出来。

K系列伞齿轮减速机的拆装也是类似的,先要在减速机的6个面中找到一个有一个面可以拆除,然后松下螺丝进行一步一步的拆除。在拆直角减速机的时候,取出伺服电机减速机轴的时候可以将油封与轴承也慢慢取出来,这样就会方面一些。而S系列蜗轮斜齿轮减速机的拆卸也是同样的道理。当然这是理论上的,如果您不经常接触减速机的话,在拆的时候还是有点难度的,一般都不建议在非专业的情况下去拆减速机,除非有足够的把握,否则拆坏了机子的话,就不容易装了。一般的情况下坏了一整套进行更坏会比较好,因为一方面买匹配的适用的部件不好买,其次如果是型号选择不对导致的损坏的话,即便换上了也容易坏

3. 松下伺服电机设置

1、设置松下伺服电机的内部转矩限制值;

2、设置值是额定转矩的百分比;

3、任何时候这个限制都有效定位完成范围;

4、设定位置控制方式下定位完成脉冲范围;

5、本参数提供了位置控制方式下松下伺服驱动器判断是否完成定位的依据,当位置偏差计数器内的剩余脉冲数小于或等于本参数设定值时,松下伺服驱动器认为定位已完成,到位开关信号为 ON,否则为OFF;

6、在位置控制方式时,输出位置定位完成信号,加减速时间常数;

7、设置值是表示松下伺服电机从0~2000r/min的加速时间或从2000~0r/min的减速时间;

8、加减速特性是线性的到达速度范围;

9、设置到达速度;

10、在非位置控制方式下,如果松下伺服电机速度超过本设定值,则速度到达开关信号为ON,否则为OFF;

11、在位置控制方式下,不用此参数;

12、与旋转方向无关。

4. 松下伺服电机用减速器怎么调节

放入衣物和洗衣粉---连接好专用进水管-打开水龙头---插上电源线---按下电源键(指示灯亮)---再按下“启动” 就O了.

5. 松下伺服驱动器加减速设置

变频器的参数设定在调试过程中是十分重要的。由于参数设定不当,不能满足生产的需要,导致起动、制动的失败,或工作时常跳闸,严重时会烧毁功率模块IGBT或整流桥等器件。变频器的品种不同,参数量亦不同。

一般单一功能控制的变频器约50~60个参数值,多功能控制的变频器有200个以上的参数。但不论参数多或少,在调试中是否要把全部的参数重新调正呢?不是的,大多数可不变动,只要按出厂值就可,只要把使用时原出厂值不合适的予以重新设定就可,例如外部端子操作、模拟量操作、基底频率、最高频率、上限频率、下限频率、启动时间、制动时间(及方式)、热电子保护、过流保护、载波频率、失速保护和过压保护等是必须要调正的。当运转不合适时,再调整其他参数。

现场调试常见的几个问题处理

起动时间设定原则是宜短不宜长,具体值见下述。

过电流整定值OC过小,适当增大,可加至最大150%。经验值1.5~2s/kW,小功率取大些;大于30kW,取>2s/kW。按下起动键*RUN,电动机堵转。说明负载转矩过大,起动力矩太小(设法提高)。这时要立即按STOP停车,否则时间一长,电动机要烧毁的。因电机不转是堵转状态,反电热E=0,这时,交流阻抗值Z=0,只有直流电阻很小,那么,电流很大是很危险的,就要跳闸OC动作。制动时间设定原则是宜长不宜短,易产生过压跳闸OE。具体值见表1的减速时间。对水泵风机以自由制动为宜,实行快速强力制动易产生严重“水锤”效应。起动频率设定对加速起动有利,尤以轻载时更适用,对重载负荷起动频率值大,造成起动电流加大,在低频段更易跳过电流OC,一般起动频率从0开始合适。起动转矩设定对加速起动有利,尤以轻载时更适用,对重载负荷起动转矩值大,造成起动电流加大,在低频段更易跳过电流OC,一般起动转矩从0开始合适。基底频率设定基底频率标准是50Hz时380V,即V/F=380/50=7.6。但因重载负荷(如挤出机,洗衣机,甩干机,混炼机,搅拌机,脱水机等)往往起动不了,而调其他参数往往无济于事,那么调基底频率是个有效的方法。即将50Hz设定值下降,可减小到30Hz或以下。这时,V/F>7.6,即在同频率下尤其低频段时输出电压增高(即转矩∝U2)。故一般重载负荷都能较好的起动。制动时过电压处理制动时过电压是由于制动时间短,制动电阻值过小所引起的,通过适当增长时间,增加电阻值就可避免。

制动方法的选择

(1)能耗制动。使用一般制动,能量消耗在电阻上,以发热形式损耗。在较低频率时,制动力矩过小,要产生爬行现象。

(2)直流制动。适用精确停车或停位,无爬行现象,可与能耗制动联合使用,一般≤20Hz时用直流制动,>20Hz时用能耗制动。

(3)回馈制动。适用≥100kW,调速比D≥10,高低速交替或正反转交替,周期时间亦短,这种情况下,适用回馈制动,回馈能量可达20%的电动机功率。更具体详情分析以及参数选取。空载(或轻载)跳OC按理在空载(或轻载)时,电流是不大的,不应跳OC,但实际发生过这样的现象,原因往往是补偿电压过高,起动转矩过大,使励磁饱和严重,致使励磁电流畸变严重,造成尖峰电流过大而跳闸OC,适当减小或恢复出厂值或置于0位。起动时在低频≤20Hz时跳OC原因是由于过补偿,起动转矩大,起动时间短,保护值过小(包括过流值及失速过流值),减小基底频率就可。起动困难,起动不了一般的设备,转动惯量GD2过大,阻转矩过大,又重载起动,大型风机、水泵等常发生类似情况,解决方法:

①减小基底频率;

②适当提高起始频率;

③适当提高起动转矩;

④减小载波频率值2.5~4kHz,增大有效转矩值;

⑤减小起动时间;

⑥提高保护值;

⑦使负载由带载起动转化为空载或轻载,即对风机可关小进口阀门。使用变频器后电动机温升提高,振动加大,噪声增高我公司载波频率设定值是2.5kHz,比通常的都低,目的是从使用安全着眼,但较普遍反映存在上述三点问题,通过增高载波频率值后,问题就解决了。

送电后按起动键RUN后没反应

(1)面板频率没设置;

(2)电动机不动,出现这种情况要立即按“停止STOP”并检查下列各条:

①再次确认线路的正确性;

②再次确认所确定的代码(尤其对与起动有关的部分);

③运行方式设定对否;

④测量输入电压,R,S,T三相电压;

⑤测量直流PN电压值;

⑥测量开关电源各组电压值;

⑦检查驱动电路插件接触情况;

⑧检查面板电路插件接触情况;

⑨全面检查后方可再次通电。

6. 松下伺服电机怎么调速度

有2种方法:适用于常用的脉冲控制模式,也就是位置控制模式

1 将上位机发送的脉冲调高

2 将伺服每转所需脉冲数调低,也就是分频