什么叫伺服驱动系统(伺服驱动机)

海潮机械 2023-01-29 06:50 编辑:admin 296阅读

1. 伺服驱动机

伺服驱动柱塞式灌装机的特点如下:

1、优点

(1)气动控制系统之结构简单,轻便,安装维护见到,压力等级低,故使用安全。

(2)工作介质是取之不尽,用之不竭的空气,排气处处理简单,不污染环境,成本低。

(3)输出力及工作速度的调节非常容易,气功多年工作速度一般(50~500mm/s,)比液压和起点方式的动作速度快。

(4)可靠性高,使用寿命长,电器元件的有效动作次数约为数万次,而SMC的一般磁通阀的寿命大于3000万次,小型阀超过1亿次。

(5)利用空气的可压缩性,可以存储能量,实现集中供气,可以在段时间释放能量,以获得间隙运动中高速的响应,可实现缓冲,对冲击负载有较强的适应能力,在一定的条件下,可使用气动装置有自保能力。

(6)全气动灌装机控制具有防火,防爆,耐潮等能力,与液压方式相比气动控制可高温使用。

(7)由于空气流动损失小,压缩空气可集中供应,远距离输送。

2、 缺点

(1)由于空气有压缩性,气缸的动作速度容易随负载的变化而变化。

(2)气缸在低速运动时,由于摩擦力占推动力的比例较大,气缸的低速稳定

(3)虽然在许多应用场合,气缸的输出力能满足工作要求,但其输出力比较小。

2. 伺服驱动机器人编程有哪些?

我用的是松下的plc----脉冲指令有

PLSH

:脉冲输出指令---SPDH

:位置控制----PWM

:PWM输出指令----PLS

:脉冲输出指令

SPD1

:位置控制--------SPCH

:脉冲输出指令(圆弧插补)------等等很多类型,根据场合使用。

例:

SPD1

:位置控制--------1.先定义绝对或相对,方向标志-【-f0-mv,

h02,dt1】

2.初始速度--【f0-mv-,设定值kxxxx,dt2-目标寄存器】3.最高速度【f0

mv,

kxxxx,dt3】4加减速时间【f0

mv

,kxxx,dt4】.5.目标值【f1

dmv

,kxxxxx,dt5】

6.脉冲输出通道指定【f0

mv,

k0\1,dt7】

【f168

spd1,dt100,k0\1】

不一一列出

具体可以网上下载资料看下,

3. 伺服驱动机如何使用

一般伺服电机都有三种控制方式:速度控制方式,转矩控制方式,位置控制方式 。

如果您对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。

如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。如果上位控制器有比较好的闭环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者,基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。

就伺服驱动器的响应速度来看,转矩模式运算量最小,驱动器对控制信号的响应最快;位置模式运算量最大,驱动器对控制信号的响应最慢。

对运动中的动态性能有比较高的要求时,需要实时对电机进行调整。那么如果控制器本身的运算速度很慢(比如PLC,或低端运动控制器),就用位置方式控制。如果控制器运算速度比较快,可以用速度方式,把位置环从驱动器移到控制器上,减少驱动器的工作量,提高效率(比如大部分中高端运动控制器);如果有更好的上位控制器,还可以用转矩方式控制,把速度环也从驱动器上移开,这一般只是高端专用控制器才能这么干,而且,这时完全不需要使用伺服电机。

换一种说法是:

1、转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部模拟量设定为5V时电机轴输出为2.5Nm:如果电机轴负载低于2.5Nm时电机正转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转(通常在有重力负载情况下产生)。可以通过即时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。

2、位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。应用领域如数控机床、印刷机械等等。

3、速度模式:通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位控制装置的外环PID控制时速度模式也可以进行定位,但必须把电机的位置信号或直接负载的位置信号给上位反馈以做运算用。位置模式也支持直接负载外环检测位置信号,此时的电机轴端的编码器只检测电机转速,位置信号就由直接的最终负载端的检测装置来提供了,这样的优点在于可以减少中间传动过程中的误差,增加了整个系统的定位精度。

4. 伺服驱动机构

伺服机构(servomechanism)是指经由闭回路控制方式达到一个机械系统位置、速度、或加速度控制的系统。

一个伺服系统的构成通常包含受控体(plant)、致动器(actuator)、传感器(sensor)、控制器(controller)等几个部分。

受控体

系指被控制的物件,例如一个机械手臂,或是一个机械工作平台。

致动器

它的功能在于主要提供受控体的动力,可能以气压、油压、或是电力驱动的方式呈现,若是采用油压驱动方式,则为油压伺服系统。

绝大多数的伺服系统采用电力驱动方式,致动器包含了马达与功率放大器,例如应用于伺服系统的特别设计马达称之为伺服马达(servo motor),其装置内含位置回授装置,如光电编码器(optical encoder)或是解角器(resolver)。

控制器

一个传统伺服机构系统的组成,伺服驱动器主要包含功率放大器与伺服控制器。

以伺服马达为例,其伺服控制器通常包含速度控制器与扭矩控制器,马达通常提供类比式的速度回授信号,控制界面采用±10V的类比讯号,经由外回路的类比命令,可直接控制马达的转速或扭矩。采用这种伺服驱动器,通常必须再加上一个位置控制器(position controller),才能完成位置控制。

主要应用于工业界的伺服马达包括直流伺服马达、永磁交流伺服马达、与感应交流伺服马达,其中又以永磁交流伺服马达占绝大多数。控制器的功能在于提供整个伺服系统的闭路控制,如扭矩控制、速度控制、与位置控制等。

一般工业用伺服驱动器(servo drive)通常包含了控制器与功率放大器。伺服驱动器包含了伺服控制器与功率放大器,伺服马达提供分辨率的光电编码器回授信号。[2]

5. 伺服驱动机构设计

原理是用来控制伺服电机的一种控制器,其作用类似于变频器之于普通交流马达,作为精密设备,它在使用过程中难免会出现一些故障,常见的故障及维修方法如下: