伺服系统和控制系统的区别(伺服系统和控制系统的区别和联系)

海潮机械 2023-01-31 00:28 编辑:admin 234阅读

1. 伺服系统和控制系统的区别和联系

一、伺服电机本身和步进电机结构类似,是不具备发送脉冲功能的,但由于有伺服电机上有配备编码器,所以有脉冲反馈回来,通过伺服驱动器的反馈脉冲,可以与系统之间实现半闭环架构,但的确需要全闭环控制的时候,是需要在最终的传动装置,比如丝杆或移动平台等 上面安装编码器或光栅,如果是那种情况的话,伺服和步进都是可以的,只是伺服不存在堵转和失步的现象,控制更简洁,但成本相对要高,可依实际情况选择,

二、如今的智能型步进控制系统,步进电机上也是有安装编码器,内部控制方式也是和伺服功能接近了,也不存在堵转和失步的现象;

三、伺服电机具备高响应和高速性及高精度的优点,真正地“三高”。但是,伺服电机也有它不可避免的如下缺陷: 1. 无法静止:由于采用闭环控制,伺服电机本身结构和电机的特性决定,伺服电机在停止时无法绝对静止,在负载扰动小或者伺服电机的参数调试良好的情况下,伺服电机始终在正负1个脉冲之间波动(可以通过观察伺服驱动器上关于编码器位置的数值,它一直在正负1之间波动)。在图像处理场合这就是一个影响精度的因素。 2. 过冲:在由高速转为低速或者静止时,不可避免地要过冲一段距离,然后在纠正回来。当控制器发一个脉冲给伺服电机时,伺服电机往往不是走一个脉冲,而是走3个脉冲,然后在回退2个脉冲。这对那些需要一个脉冲一个脉冲运动的场合,绝对不允许过冲的场合时致命的。 3. 调试复杂:伺服驱动器内动辄上百个参数,使用说明书几百页,着实让新手发怵;更换一个品牌的伺服电机,也会让老手着实头痛。这也为售后服务和维修带来了大量的工作。 4. 低速蠕动:在低速时伺服电机的运行会出现蠕动或者称之为爬行。 四、一体化闭环步进电机就完美地解决伺服电机存在的问题。由于闭环步进电机不是简单的给步进电机配一个编码器了事,而是按照伺服电机系统的工作原理进行设计和开发。它采用32位的DSP做为主处理器,以保证整个系统的高响应和高速,可以做到每隔25微秒就可以调整一次电机的电流,标配10000个脉冲/圈的编码器,而且是金属码盘的编码器,既保证了精度,也保证了对环境、温度和振动的高适应性、稳定性和可靠性,甚至优于采用玻璃码盘编码器的伺服电机。 首先,

一体化闭环步进电机

由于是电机的本体是步进电机,在静止时是绝对静止不动的。

其次,

一体化闭环步进电机

由于结合了步进电机的特点和伺服的控制方式,所以不会过冲(因为步进电机的特点就是不会过冲)。 第三,调试和使用非常简单,只需要调节驱动器的3个电位器的位置,不仅设备制造商可以使用,而且设备使用商也可以使用,对使用者的要求极低。 第四,驱动器采用真正地正弦波、向量和滤波方式控制电流,最低转速可以控制在0.2转/分,而且电机运行非常平稳和稳定,这一点甚至是伺服电机都无法做到(一般伺服电机理论上可以做到1转/分,实际的应用场合是无法做到1转/分,大致在5rpm以上)。

2. 伺服系统属于什么控制系统

一、伺服电机本身和步进电机结构类似,是不具备发送脉冲功能的,但由于有伺服电机上有配备编码器,所以有脉冲反馈回来,通过伺服驱动器的反馈脉冲,可以与系统之间实现半闭环架构,但的确需要全闭环控制的时候,是需要在最终的传动装置,比如丝杆或移动平台等 上面安装编码器或光栅,如果是那种情况的话,伺服和步进都是可以的,只是伺服不存在堵转和失步的现象,控制更简洁,但成本相对要高,可依实际情况选择, 二、如今的智能型步进控制系统,步进电机上也是有安装编码器,内部控制方式也是和伺服功能接近了,也不存在堵转和失步的现象; 三、伺服电机具备高响应和高速性及高精度的优点,真正地“三高”。但是,伺服电机也有它不可避免的如下缺陷: 1. 无法静止:由于采用闭环控制,伺服电机本身结构和电机的特性决定,伺服电机在停止时无法绝对静止,在负载扰动小或者伺服电机的参数调试良好的情况下,伺服电机始终在正负1个脉冲之间波动(可以通过观察伺服驱动器上关于编码器位置的数值,它一直在正负1之间波动)。在图像处理场合这就是一个影响精度的因素。 2. 过冲:在由高速转为低速或者静止时,不可避免地要过冲一段距离,然后在纠正回来。当控制器发一个脉冲给伺服电机时,伺服电机往往不是走一个脉冲,而是走3个脉冲,然后在回退2个脉冲。这对那些需要一个脉冲一个脉冲运动的场合,绝对不允许过冲的场合时致命的。 3. 调试复杂:伺服驱动器内动辄上百个参数,使用说明书几百页,着实让新手发怵;更换一个品牌的伺服电机,也会让老手着实头痛。这也为售后服务和维修带来了大量的工作。 4. 低速蠕动:在低速时伺服电机的运行会出现蠕动或者称之为爬行。 四、一体化闭环步进电机就完美地解决伺服电机存在的问题。由于闭环步进电机不是简单的给步进电机配一个编码器了事,而是按照伺服电机系统的工作原理进行设计和开发。它采用32位的DSP做为主处理器,以保证整个系统的高响应和高速,可以做到每隔25微秒就可以调整一次电机的电流,标配10000个脉冲/圈的编码器,而且是金属码盘的编码器,既保证了精度,也保证了对环境、温度和振动的高适应性、稳定性和可靠性,甚至优于采用玻璃码盘编码器的伺服电机。 首先,一体化闭环步进电机由于是电机的本体是步进电机,在静止时是绝对静止不动的。 其次,一体化闭环步进电机由于结合了步进电机的特点和伺服的控制方式,所以不会过冲(因为步进电机的特点就是不会过冲)。 第三,调试和使用非常简单,只需要调节驱动器的3个电位器的位置,不仅设备制造商可以使用,而且设备使用商也可以使用,对使用者的要求极低。 第四,驱动器采用真正地正弦波、向量和滤波方式控制电流,最低转速可以控制在0.2转/分,而且电机运行非常平稳和稳定,这一点甚至是伺服电机都无法做到(一般伺服电机理论上可以做到1转/分,实际的应用场合是无法做到1转/分,大致在5rpm以上)。

3. 调节系统和伺服系统的区别

方法如下

速度模式:通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位控制装置的外环PID控制时速度模式也可以进行定位,但必须把伺服电缸的电机位置信号或直接负载的位置信号给上位反馈以做运算用。位置模式也支持直接负载外环检测位置信号,此时的电机轴端的编码器只检测电机转速,位置信号就由直接的最终负载端的检测装置来提供了,这样的优点在于可以减少中间传动过程中的误差,增加了整个系统的定位精度。

位置控制:位置控制模式一般 是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。

闭环伺服控制:就是闭环负反馈PID调节系统,伺服驱动器内部进行,通过装置检测驱动器给伺服电缸的电机的各相的输出电流,负反馈给电流的设定进行PID调节,从而达到输出电流尽量接近等于设定电流。

转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小。

4. 伺服控制系统与plc区别

首先你要搞清楚了,PLC主要是用来逻辑控制,是逻辑控制器;伺服电机则受变频器或者伺服控制器驱动,即受变频器或者伺服控制器控制;但是PLC可以控制变频器或者伺服控制器。换而言之,PLC可以间接的控制伺服电机,但是不能说伺服电机是用PLC编程的。

5. 伺服系统可分为什么

伺服电机分为交流伺服和直流伺服两大类

 

交流伺服电机的基本构造与交流感应电动机(异步电机)相似。在定子上有两个相空间位移90°电角度的励磁绕组Wf和控制绕组WcoWf,接恒定交流电压,利用施加到Wc上的交流电压或相位的变化,达到控制电机运行的目的。交流伺服电机具有运行稳定、可控性好、响应快速、灵敏度高以及机械特性和调节特性的非线性度指标严格(要求分别小于10%~15%和小于15%~25%)等特点。

直流伺服电机基本构造与一般直流电动机相似。电机转速n=E/K1j=(Ua-IaRa)/K1j,式中E为电枢反电动势,K为常数,j为每极磁通,Ua、Ia为电枢电压和电枢电流,Ra为电枢电阻,改变Ua或改变φ,均可控制直流伺服电动机的转速,但一般采用控制电枢电压的方法,在永磁式直流伺服电动机中,励磁绕组被永久磁铁所取代,磁通φ恒定。直流伺服电动机具有良好的线性调节特性及快速的时间响应。

直流伺服电机的优点和缺点

优点:速度控制精确,转矩速度特性很硬,控制原理简单,使用方便,价格便宜。

缺点:电刷换向,速度限制,附加阻力,产生磨损微粒(无尘易爆环境不宜)

交流伺服电机的优点和缺点

优点:速度控制特性良好,在整个速度区内可实现平滑控制,几乎无振荡,90%以上的高效率,发热少,高速控制,高精确度位置控制(取决于编码器精度),额定运行区域内,可实现恒力矩,惯量低,低噪音,无电刷磨损,免维护(适用于无尘、易爆环境)

缺点:控制较复杂,驱动器参数需要现场调整PID参数确定,需要更多的连线。

直流伺服电机分为有刷和无刷电机。

有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护方便(换碳刷),产生电磁干扰,对使用环境有要求,通常用于对成本敏感的普通工业和民用场合。

无刷电机体积小重量轻,出力大响应快,速度高惯量小,力矩稳定转动平滑,控制复杂,智能化,电子换相方式灵活,可以方波或正弦波换相,电机免维护,高效节能,电磁辐射小,温升低寿命长,适用于各种环境。

交流伺服电机也是无刷电机,分为同步和异步电机,目前运动控制中一般都用同步电机,其功率范围大,功率可以做到很大,大惯量,最高转速低,转速随功率增大而匀速下降,适用于低速平稳运行场合

伺服电机内部的转子是永磁铁,驱动器控制U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器将反馈信号传给驱动器,对反馈值与目标值进行比较,从而调整转子转动的角度,伺服电机的精度决定于编码器的精度(线数)。