谐波减速机应用场合(谐波减速机速比)

海潮机械 2023-01-31 05:25 编辑:admin 267阅读

1. 谐波减速机速比

速比=电机输出转数÷减速机输出转数

("速比"也称"传动比")

1.知道电机功率和速比及使用系数,求减速机扭矩如下公式:

减速机扭矩=9550×电机功率÷电机功率输入转数×速比×使用系数

2.知道扭矩和减速机输出转数及使用系数,求减速机所需配电机功率如下公式:

电机功率=扭矩÷9550×电机功率输入转数÷速比÷使用系数

电动机扭距计算

电机的“扭矩”,单位是

n•m(牛米)

计算公式是

t=9549

*

p

/

n

p是电机的额定(输出)功率单位是千瓦(kw)

分母

是额定转速

n

单位是转每分

(r/min)

p和

n可从

电机铭牌中直接查到。

设:电机额定功率为p

(kw),转速为n1

(r/min),减速器总传动比i,传动效率u。

则:输出转矩=9550*p*u*i/n1

(n.m)

2. 谐波减速机间隙

滚珠丝杠副轴向间隙的调整方法 滚珠丝杠副除了对本身单一方向的转动精度有要求外,对其轴向间隙也有严格要求,以保证其反向传动精度。

滚珠丝杠副的轴向间隙是承载时在滚珠与滚道型面接触点的弹性变形所引起的螺母位移量和螺母原有的间隙的综合。

通常采用双螺母预紧的方法,把弹性变形控制在最小范围内,以减小或消除轴向间隙,并可以提高滚珠丝杠副的刚度。

应用双螺母时预紧方法消除轴向间隙时应注意以下几点:

i.预紧力大小必须合适,过小不能保证无隙传动,过大将使驱动力矩增大,效率降低,寿命缩短。

预紧力应不超过最大轴向负载的1/3。

ii.要特别注意减小丝杠安装部分和驱动部分的间隙,这些间隙用预紧的方法消除的,而它对传动精度有直接影响。

这里选用垫片调隙式消除轴向间隙的方法。

垫片调整式是指用螺钉连接滚珠丝杠两个螺母的凸缘,并在凸缘间加垫片。

调整垫片的厚度使螺母产生微量的轴向位移,以达到消除轴向间隙和产生 预紧力的目的。

该形式结构紧凑,工作可靠,调整方便,应用广。

缺点是不很准确,并且当滚道磨损时不能随意调整,除非更换垫圈。 滚珠丝杠副的安装 i.支承方式的选择 为了保证滚珠丝杠副传动的刚度和精度,应选择合适的支承方式,选用高刚度、小摩擦力矩、高运转精度的轴承,并保证支承座有足够的刚度。

滚珠丝杠副的支承按其限制丝杠轴的轴向窜动情况,分为三种形式。这里选用一端固定、一端游动(F-S) 形式的安装方法,固定端采用深沟球轴承和双向推力球轴承,可分别承受径向和轴向负载,螺母、挡圈、轴肩、支承座台肩、端盖提供轴向限位,垫圈可调节推力轴承的轴向预紧力。

游动端需要径向约束,轴向无约束。

采用深沟球轴承,其内圈由挡圈限位,外圈不限位,以保证丝杠在受热变形后可在游动端自由伸缩。

ii.制动装置 由于滚动丝杠副的传动效率高,又无自锁能力,故需安装制动装置以满足其传动要求。本装置使用摩擦离合器制动。

iii.润滑和密封 a.润滑 润滑剂可提高滚珠丝杠副的耐磨性和传动效率。

润滑剂分为润滑油、润滑脂两大类。

润滑油为一般机油或90~180号透平油或140号主轴油,可通过螺母上的油孔将其诸如螺纹滚道;润滑脂可采用锂基油脂,它加在螺纹滚道和安装螺母的壳体空间内。

b.密封 滚珠丝杠副在使用时常采用一些密封装置进行防护。为防止杂质和水进入丝杠(否则会增加摩擦或造成损坏),对于预计会带进杂质之处使用波纹管或伸缩罩,以完全盖住丝杠轴,对于螺母,应在其两端进行密封。

密封材料必须具有防腐蚀和耐油性能。 减速器的选择 根据丝杠的尺寸、转速及转矩的要求,选择XB1-50型谐波减速器,减速比为46,输出力矩为。 谐波减速器的工作原理是,波发生器凸轮在高速轴的带动下,经柔性轴承是柔轮的齿在产生弹性变形同时,与刚轮的齿相互作用,完成减速功能。 谐波减速器的特点是传动侧隙小,空程小,传动精度高,体积小,噪声低。 联轴器的选择 (1).减速器与电动机间的联轴器选择 i.类型选择: 选用半圆键套筒联轴器。

(2).减速器与丝杠间的联轴器的选择 i.类型选择: 选用平键套筒联轴器。

7、导轨的设计 (1)、导轨的功用 机电一体化产品要求其机械系统的各运动机构必须得到安全的支承,并能准确地完成其特定方向的运动。

这个任务就由导向机构来完成。

机电一体化产品的导向机构是导轨,其作用是支承和导向。

(2)、导轨的分类和特点 一副导轨主要由两部分组成,在工作时一部分固定不动,称为支承导轨(或导动轨),另一部分相对支承导轨作直线或回转运动,称为动导轨(或滑座)。根据导轨副(简称导轨)之间的摩擦情况,导轨分为:1)滑动导轨2)滚动导轨 (3)、导轨的基本要求 1)导向精度 导向精度主要是指动导轨沿支承导轨运动的直线度或圆度。影响它的因素有:导轨的几何精度、结构形式、刚度、热变形、装配质量以及液体动压和静压导轨的油膜厚度、油膜刚度等。 2)耐磨性 是指导轨在长期使用过程中能否保持一定的导向精度。因导轨在工作过程中难免有所磨损,所以应力求减少磨损量,并在磨损后能自动补偿或便于调整。 3)疲劳和压溃 导轨面由于过载或接触应力不均匀而使导轨表面产生弹性变形,反复运行多次后就会行程疲劳点,呈塑性变型,表面形成龟裂、剥落而出现凹坑,这种现象就是压溃。疲劳和压溃使滚动导轨试销的主要原因,为此应控制滚动导轨承受的最大载荷和受载的均匀性。 4)刚度 导轨受力变形会影响导轨的导向精度及部件之间的相对位置,因此要求导轨应有足够的刚度。为减轻或平衡外力的影响,课采用加大导轨尺寸或添加辅助导轨的方法提高刚度。 5)低速运动平稳性 低速运动时,作为运动部件的动导轨容易产生爬行现象。低速运动的平稳性与导轨的结构和润滑,动、静摩擦系数的差值,以及导轨的刚度等有关。

3. 谐波减速机精度是多少

  (1)传动速比大。单级谐波齿轮传动速比范围为70~320,在某些装置中可达到1000,多级传动速比可达30000以上。它不仅可用于减速,也可用于增速的场合。  (2)承载能力高。这是因为谐波齿轮传动中同时啮合的齿数多,双波传动同时啮合的齿数可达总齿数的30%以上,而且柔轮采用了高强度材料,齿与齿之间是面接触。  (3)传动精度高。这是因为谐波齿轮传动中同时啮合的齿数多,误差平均化,即多齿啮合对误差有相互补偿作用,故传动精度高。在齿轮精度等级相同的情况下,传动误差只有普通圆柱齿轮传动的1/4左右。同时可采用微量改变波发生器的半径来增加柔轮的变形使齿隙很小,甚至能做到无侧隙啮合,故谐波齿轮减速机传动空程小,适用于反向转动。  (4)传动效率高、运动平稳。由于柔轮轮齿在传动过程中作均匀的径向移动,因此,即使输入速度很高,轮齿的相对滑移速度仍是极低(故为普通渐开线齿轮传动的百分之-),所以,轮齿磨损小,效率高(可达69%~96%)。又由于啮入和啮出时,齿轮的两侧都参加工作,因而无冲击现象,运动平稳。  (5)结构简单、零件数少、安装方便。仅有三个基本构件,且输入与输出轴同轴线,所以结构简单,安装方便。  (6)体积小、重量轻。与一般减速机比较,输出力矩相同时,谐波齿轮减速机的体积可减小2/3,重量可减轻1/2。  (7)可向密闭空间传递运动。利用柔轮的柔性特点,轮传动的这一可贵优点是现有其他传动无法比拟的。  谐波齿轮减速机在许多行业都有使用到,例如航天、常用军械、起重机械等等这一些机械方面,谐波减速机都是有应用到的。谐波减速机传递的功率是可大可小的,从几十瓦到几十千瓦都是可以的,但是大功率的多用于短期的工场中。不过经过上面简单的了解谐波减速机的优点后,相信大家都知道这个谐波减速机是多么的有用处,提高工作效率。

4. 谐波齿轮的减速比

减速比是由大小齿轮啮合输出转速,多级齿轮啮合,减速比更低,扭矩更大。 减速比通俗理解,例如1:100的减速比是电机(马达)转速100rpm(转),输出主轴1rpm(转)。 减速比计算公式:减速比=输入转速÷输出转速。 1、减速比,即减速装置的传动比,是传动比的一种,是指减速机构中瞬时输入速度与输出速度的比值,用符号“i”表示减速比的意思:比如减速比1/64,:如果步进电机输出1N.m的转矩的话,通过减速箱转换后的输出力矩64N.m,当然转速降低为原转速的1/64。

2、一般减速比的表示方法是以1为分母,用“:”连接的输入转速和输出转速的比值,如输入转速为1500r/min,输出转速为25r/min,那么其减速比则为:i=60:1。一般的减速机构减速比标注都是实际减速比,但有些特殊减速机如摆线减速机或者谐波减速机等有时候用舍入法取整,且不要分母,如实际减速比可能为28.13,而标注时一般标注28。

5. 谐波减速机速比多少比较好

总的来说应该分三类,涡轮蜗杆减速机,谐波减速机,摆线针轮减速机和行星减速机。

其中涡轮蜗杆强度最大,但是效率低,精度也不高,但是它有反向自锁功能,可以有较大的减速比,体积大,输入转速3000以上,谐波减速机的主要特点是体积不大.精度不高,寿命有限,不耐冲击,刚性和金属件相比较差,输入转速不能太高,输入转速2000以下,行星减速机结构比较紧凑,回程间隙小,精度最高,试用寿命很长,额定输出扭矩可以做的很大,但价格略贵。

6. 什么叫谐波减速机

z2、z1--分别为刚轮与柔轮的齿数。当刚轮固定、发生器主动、柔轮从动时,谐波齿轮传动的传动比为i=-z1/(z2-z1)

7. 谐波减速机速比计算

谐波减速器主要应用于航空、航天、机器人、通信设备、电子设备、医疗器械等领域,由于谐波减速器的基本组成部件和谐波减速器的工作原理与普通的齿轮减速器有很大的差异化,因此决定了它拥有普通齿轮减速器无法比拟的优点,下面是国森科整理的七个谐波减速器的主要优点。

1.小型轻量

谐波减速器与一般齿轮减速器相比较,输出力矩相同时,它的体积可减小2/3,重量可减轻1/2。

2.传动精度高

因为谐波传动中同时啮合的齿数多,误差平均化,即多齿啮合对误差有相互补偿作用,故传动精度高。在齿轮精度等级相同的情况下,传动误差只有普通圆柱齿轮传动的1/4左右。同时可采用微量改变波发生器的半径来增加柔轮的变形使齿隙很小,甚至能做到无侧隙啮合,因此传动空程小,适用于反向转动。

3.传动速比大

单级谐波传动速比范围为70-320,在某些装置中可达到1000,多级传动速比可达30000以上。它不仅可用于减速,也可用于增速的场合。

4.结构简单紧凑、安装方便

因为只有三个基本组成部件,且输入与输出同,所以结构简单紧凑,安装方便。

5.承载能力高

这是因为谐波传动中同时啮合的齿数多,双波传动同时啮合的齿数可达总齿数的30%以上,而且柔轮采用了高强度材料,齿与齿之间是面接触。

6.可向密闭空间传递运动

利用柔轮的柔性特点,轮传动的这一特定优点是现有其他传动无法比拟的。

7.传动效率高、运动平稳

由于柔轮轮齿在传动过程中作均匀的径向移动,因此,即使输入速度很高,轮齿的相对滑移速度仍是极低(故为普通渐开线齿轮传动的百分之—),所以,轮齿磨损小,效率高(可达69%-96%)。又由于啮入和啮出时,齿轮的两侧都参加工作,因而无冲击现象,运动平稳。

谐波减速器由于谐波传动原理的优越性,拥有以上7个其它普通齿轮减速器不可比拟的优点,因此可以在各个重要领域的重要部件得到重要的应用。

8. 谐波减速机扭矩

首先要明确工业机器人关节的工况:

1. 需要撑住后端机构由于重力产生的扭矩2. 关节转速不高那么使用减速机的原因有两点,第一提扭矩第二提控制分辨率和闭环精度打个比方,一个50:1的谐波减速机就能轻松将一个额定100mNm的电机的额定扭矩提升到5Nm,代价是:

1. 转子转速比直驱高49倍——本来工业机器人的关节转速就不高一般都是每秒一两转,额定100mNm的电机轻松跑6k转/min,白不转那么快。要是嫌转的不够快? 好说,提电压呗,只要轴承和转子撑得住。

2. 重量提高到原来3倍——举个例子 maxon EC45最厚的那个电机,额定转矩83mNm,110g,maxon EC90,额定转矩560mNm, 600g。可以脑补一下额定5Nm的电机重量是多少倍..

. 3. 维持相同扭矩时,发热功率是不加减速机的1/2500. 其实不是说额定100mNm的电机干不到5Nm,往死里提电流就好了,就是电机会比较烫撑不了几秒就得冒烟就算上了水冷电费也会比较多... 要想达到相同扭矩又不想太烫就得换 扭矩/发热 效率高且热阻小热容量大的电机那么又回到2.所说的问题了...还有好处是:

1. 一个普通5k线的光电码盘就能实现1.44mdeg的角度分辨率。

当然如果你钱多上正余弦编码器使劲细分也可以。 或者是一个5相1000步的步进电机可以做到7.2mdeg的分辨率 (没错我说的就是东方电机的33步进+50:1的谐波)。

分辨率高的好处是转速控制可以更精确,由于量化造成的阶跃产生的高频分量变得很小,控制更加平滑。

2. 由于有个50:1的大的减速比,减速机出轴受到扰动传递到电机端就比直驱缩减了37dB,使得闭环精度在减速机出轴显得更高。

同时转子等效的转动惯量提高到了2500倍,使得控制环路的滞后环节受转子惯量占主导,而转子由于直接受电磁力的驱动从而没有由于刚度造成的扭矩滞后,比直驱要好控。

当然缺点还是有的,有了减速机而编码器装在电机端的话减速机的制造精度会影响实际精度,多级减速机里的齿隙油膜厚度变化什么的经过多级放大还会造成重复精度的下降,还有减速机毕竟有齿轮啮合或是柔轮变形,有寿命限制。

总之工业机器人上用减速机就是用电机容易达到的高转速换取电机不易做到的高扭矩和低质量。就这些,欢迎指正...对了还有,主轴电机由于要切削做功所以是另一回事,不是以上所讨论的了。