1. 真空隧道干燥炉
干燥窑是用于工业生产中的一种大型干燥设备,在水泥工业、冶金工业、木材干燥、砖瓦干燥等生产中有广泛的应用。干燥窑生产过程中窑体反应温度较高,因此窑体温度等过程参数采集与监测控制是保证焙烧质量的重要环节。
基本结构:
干燥窑主要由干燥炉主体、烘干房、热风蒸汽输送管道、回收管道、闸阀及温湿度仪表等组成。RHM干燥炉主体主要由炉门及炉膛、热能交换系统、蒸汽发生装置、助燃装置、清灰口、风机、烟囱等部分构成。
工作原理:
木材专用热风蒸汽干燥炉干燥系统,主要由干燥炉主体、烘干房、热风蒸汽输送管道、回收管道、闸阀及温湿度仪表等组成。干燥炉主体主要由炉门及炉膛、热能交换系统、蒸汽发生装置、助燃装置、清灰口、风机、烟囱等部分构成。
2. 隧道干燥窑
vk如果是普通建筑用烧结砖,单就干燥窑来说最高干燥温度应在120度,且应分为预热,等速干燥,降速干燥,平衡干燥4个阶段,但是在隧道窑内烧时预热带温度就应是150--500度
3. 热风烘干隧道炉
隧道烘箱采用长箱体热风循环以及远红外干燥方式干进行干燥的一种烘箱。主要是为了针对产量高效率要求高的烘干干燥需求。 基本工作原理:在计算机系统的监控下,瓶子随输送带的输送依次进入隧道灭菌烘箱的预热区、高温灭菌区(温度≥5min)和低温冷却区。输送带速度无级可调,温度监控系统设置无纸或有纸记录。整个过程始终处于百级层流保护之下。 基
4. 隧道式干燥装置
干燥器是对湿物料进行干燥的设备。各种生产过程需经干燥处理的物料是多种多样的,对干燥的要求也各不相同,因此干燥器种类繁多,根据供热方式,有以下四类:对流干燥器 应用最广的一类干燥器,包括流化干燥器、气流干燥器、厢式干燥器、喷雾干燥器、隧道式干燥器等。此类干燥器的主要特点是:
①热气流和固体直接接触,热量以对流传热方式由热气流传给湿固体,所产生的水汽由气流带走;
②热气流温度可提高到普通金属材料所能耐受的最高温度(约730℃),在高温下辐射传热将成为主要的传热方式,并可达到很高的热量利用率;
③气流的湿度对干燥速率和产品的最终含水量有影响;
④使用低温气流时,通常需对气流先作减湿处理;
⑤汽化单位质量水分的能耗较传导式干燥器高,最终产品含水量较低时尤甚;
⑥需要大量热气流以保证水分汽化所需的热量,如果被干燥物料的粒径很小,则除尘装置庞大而耗资较多;
⑦宜在接近常压条件下操作。传导干燥器 包括螺旋输送干燥器、滚筒干燥器、真空耙式干燥器、冷冻干燥器等,这一类干燥器的主要特点是:①热量通过器壁(通常是金属壁),以热传导方式传给湿物料;②物料的表面温度可以从低于冰点(冷冻干燥时)到 330℃;③便于在减压和惰性气氛下操作,挥发的溶剂可回收。常用于易氧化、易分解物料的干燥,亦适用于处理粉状物料。辐射干燥器 通过辐射传热,将湿物料加热进行干燥。电加热辐射干燥器用红外线灯泡照射被干燥物料,使物料温度升高而干燥。煤气加热干燥器则燃烧煤气将金属或陶瓷辐射板加热到 400~500℃,使之产生红外线,用以加热被干燥的物料。辐射干燥器生产强度大,设备紧凑,使用灵活,但能量消耗较大。适用于干燥表面大而薄的物料,如塑料、布匹、木材、涂漆制品等。介电干燥器 将被干燥物料置于高频电场内,利用高频电场的交变作用将物体加热进行干燥。这种加热的特点是物料中含水量越高的部位,获得的热量越多。由于物料内部的含水量比表面高,因此物料内部获得的能量较多,物料内部温度高于表面温度,从而使温度梯度和水分扩散方向一致,可以加快水的汽化,缩短干燥时间,这种干燥器特别适用于干燥过程中容易结壳以及内部的水分难以去尽的物料(如皮革)。介电加热干燥的电能消耗很大,目前主要应用于食品及轻工生产。进行干燥器的设计计算,首先必须选择合适的干燥器类型。目前干燥器的选型还带有很大的经验性,主要应当考虑以下几个方面:①物料和产品的特点,例如物料的形态(如浆状、糊状、粉末、块粒、薄片等),固体颗粒的粒度和强度,初始含水量和水分的存在形式,物料是否有毒、易燃、易氧化,产品要求的最终含水量,产品是否允许稍有污染,形体是否允许稍有改变,产品的最高允许温度和产品的价格等。②与生产过程有关的条件,例如处理的物料量,干燥的前处理与后处理情况,挥发的溶剂,是否回收等。③干燥器的操作性能和经济指标。经过上述几方面的综合考虑,对各类干燥器进行比较筛选后,一般只剩下为数不多的几种干燥器,然后进行小试,寻找最适宜的操作参数及结构参数,最后根据设备价格和小试情况,决定采用何种干燥器。正确的维护和使用干燥器,请咨询厂家。
5. 隧道式干燥设备
一、 干燥室设计、 施工不合理
1、干燥室保温效果差。有的属于设计问题, 有的属于施工问题。个别厂家干燥室顶部直接用 12cm空心板覆盖,上边未采取任何保温措施,所以,只要出现低温甚至零度天气,干燥室内就很可能出现塌坯。
2、预热段干燥室漏风。负压排潮的干燥室中, 预热段全部为负压,如果干燥室出现裂纹,或预热段排潮孔封闭不严,冬季在北方寒冷地区,当温度低于 -6℃时,只要有冷空气侵入干燥室,就很可能造成大幅度降温。
3、干燥室供热温度低。由于焙烧操作技术不到位,由焙烧窑抽取的热量送不到干燥室。主要表现在砖坯内燃太低,焙烧窑内温度低,不能满足干燥室的需要;主风道设计太小,风道阻力太大,温度送不到干燥室。
4、干燥室预热段设计太长。 或因调整干燥时人为地增加预热段长度,预热段设置过长,使热空气流程太长,导致室内降温过大。干燥室排潮不合理,从而使室内湿度达到饱和导致出现塌坯现象。调整干燥室参数,应以温度再低不回潮塌坯,温度再高不裂坯为标准。
5、砖坯回潮都是发生在干燥室的预热段。 由于干燥室临界点调整不正确,使预热段中空气湿度达到了饱和,砖坯的这种绝对饱和湿空气不仅不能及时排出室外,反而被砖坯因温度含水率低吸收。
含水率高的砖坯因水分高,在干燥室临界点前水分排不出去,超过临界点后受周围环境热气影响,急剧脱水,水分先从坯体表面脱去,使周围介质的热量逐渐向内层传导,当坯体内部温度达到外界温度时,才能从内部沿着很多毛细孔向外扩散出去。但这时坯体外面早已被干皮封锁,而内部的水分急剧向外扩散,从而使砖坯产生了网状裂纹,网状裂纹的砖坯经过焙烧就成为了哑音砖,使质量受到严重影响。
二、排风、排潮系统设计不合理
1、排潮系统设计不合理。 部分砖厂干燥室上就没有排潮孔。某砖厂干燥室顶部每 6m建一个排潮囱,直至冷却段,烟囱口即使全部掀开,3m宽隧道窑日产也不超过4万块,干燥过程中一直出现塌坯。
2、送热风机或排潮风机设计太小, 风量小。 干燥室风机好比是人的心脏,应精心设计。某厂先选用煤矿停产风机,后又买新风机,都因风压大、风量小而影响产量质量,三次更换风机。另有一厂,一部火轮窑人工干燥本应使用 12#风机,实际却用10#风机,风量小、干燥室出现塌坯。
3、风机风闸不到位。 夏天温度高时, 天气突然下雨,砖坯装不上窑,焙烧工减少风量蹲火,干燥室刚进湿坯多,也容易导致塌坯。
4、送热风机运行频率太低, 变频器没有满负荷运转。
5、焙烧、 支风闸开启太小。 多数焙烧工采用自然干燥操作方法,认为风量够焙烧即可。如某厂大断面干燥室出现塌坯,我们对该厂进行了技术改进,从风机进风口开孔,增大了风量,塌坯现象才得到解决。
7、砖坯塌坯主要是由于干燥室内顶板或排潮烟囱内壁有冷凝成的水珠,大量水珠滴落到砖坯上,致使砖坯软化、碎裂。从一车一小部分,扩大到一大部分,甚至整车坍塌,严重时整个预热段内砖坯全部坍塌,如果检查不及时,继续进车,则出现整个干燥室坍塌。
干燥室内空气带走水蒸气的能力是有限的,温度发生变化,其带走水蒸气的能力也随之变化。同等体积的空气,温度越高,其带走水蒸气能力就越大,反之越小。理论计算:1m3标准状态下的空气在20℃时,能带走水蒸气18.56g;而在60℃时,则能带走水蒸气158.68g, 其带走水蒸气的能力是20℃时的8.5倍。如果在预热段1m3的60℃空气,若已达到绝对饱和,当排潮温度为20℃时,这1m3空气会蒸发出140.12g水蒸气,如果每小时排风量为6万m3,则每小时会蒸发出8407.2kg水蒸气,按正常计算这个数字是相当惊人的。
三、干燥室制度、措施不合理
1、天气的影响。 在北方冬季零下十几度生产时, 生产车间无保温措施,砖坯温度太低,进入干燥室与干燥温度不匹配。
2、干燥制度不合理, 进车不均匀, 进车太多。 在预热段,湿坯水分没排出就进入烘干段。
四、干燥室设计要求
选择风机时,干燥室各段通风孔大小应 >支风道 >总风道 >风机出口 1.8~2.5倍设计。许多砖厂都达不到上述要求,所以砖坯出现回潮塌坯。
五、结束语
干燥室砖坯回潮、塌坯的原因比较复杂。各种原因交织在一起,互相影响,特别是没有建立严格的干燥室干燥制度,临界点无法确定,给操作工作带来一定困难。我们应根据不同的原因采取不同方法来解决砖坯塌坯问题。有条件的砖厂最好使用蒸气处理原 料。原料通过热蒸汽处理相当于给坯体加温,当坯体温度超过了干燥室进车温度,砖坯提前预热可有效地防止塌坯。虽然表面看似提高了成本,实际上烧砖操作时内燃减少,节约燃料,实际成本降低,这是解决砖坯回潮、塌坯的有效措施。
6. 隧道式烘干设备生产线
可能三个原因:砖坯原材料不够适宜做砖;砖坯材料没有均匀;砖坯没有压密实。