红外分光光度计光源(近红外分光光度计)

海潮机械 2023-01-16 01:54 编辑:admin 179阅读

1. 近红外分光光度计

红外分光光度法

红外分光光度法是当物质分子吸收- 记波长的光 能,能引起分子振动和转动能级跃迁,产生的吸收光谱一般在2. 5〜25nm的中红外光 区,称为红外分子吸收光谱,简称红外光谱。利用红外光谱对 物质进行定性分析或定量测定的方法称红外 分光光度法。由于物质分子发生振动和转动 能级跃迁所需的能量较低,几乎所有的有机 化合物在红外光区均有吸收。分子中不同官能团,在发生振动和转动能级跃迁时所需的 能量各不相同,产生的吸收谱带其波长位置就成为鉴定分子中官能团特征的依据,其吸 收强度则是定量检测的依据。红外分光光度 法可用于分子结构的基础研究(测定分子键 长、键角、推断分子的立体构型等),以及化学组成的分析(化合物的定性定量分析), 应用最广泛的是对未知毒物的结构分析、纯 度鉴定。缺点是灵敏度低,不宜进行微量成 分定量测定,而1L要求样品必须纯化。后来 发展起来的傅立叶红外光谱法克服了灵敏度 低的不足,可测定l(T9g的微量样品。

2. 红外光谱分光光度计

红外分光光度计特点: 灵敏,,快速和简便,在复杂组分系统中,不需要分离,即能检测出其中所含的极少量物质.

基本工作原理:用一定频率的红外线聚焦照射被分析的试样,如果分子中某个基团的振动频率与照射红外线相同就会产生共振,这个基团就吸收一定频率的红外线,把分子吸收的红外线的情况用仪器记录下来,便能得到全面反映试样成份特征的光谱,从而推测化合物的类型和结构。IR光谱主要是定性技术,但是随着比例记录电子装置的出现,也能迅速而准确地进行定量分析。

3. 近红外分光光度计检定规程

JJG 178-1996是关于可见分光光度计检定方面的国家技术监督局的行业标准。该标准的具体的编号及名称为JJG 178-1996可见分光光度计检定规程。

该标准的具体使用说明的情况如下:

本规程适用于波长范围190nm~2600nm,波长连续可调的可见、紫外-可见、紫外-可见-近红外分光光度计的首次检定、后续检定和使用中检验。

4. 近红外分光光度计 信噪比

原子吸收分光光度计使用的元素灯大多数是空心阴极灯,它是易损件,一般使用寿命为数百小时。因此,平时应注意对空心阴极灯的保养。

1、防止通光窗口玷污

取放空心阴极灯时,工作人员的手不能接触灯的通光面,最好不要直接拿灯管,而要拿灯座,以防止玷污空心阴极灯的通光窗口,'使光通量下降或灯管破裂伤人。

2、注意防止损坏通光面

如果灯管玷污或窗口有油污、手印等污物,应该用脱脂棉蘸无水酒精或乙醚(1:3)轻轻擦拭。特别要注意不能用硬棒直接接触空心阴极灯的通光面表面,以防损坏通光面。

3、注意选用灯电洗

在使用时不要超过灯的额定电流,最好使用推荐电流;如果空心阴极灯制造厂没有给出推荐电流,使用者应该尽量使用小的灯电流,无论如何不能超过额定电流。作者的实践证明:小的灯电流可以得到更好的信噪比,并且有时半功率点最佳。如果超过额定电流,则会使阴极材料大量激射,产生热蒸发甚至使阴极培化,从而缩短灯的寿命,或者产生永久性破坏。

4、注意经常通电点灯防潮

如果空心阴极灯长期不用,可能会因漏气等原因使灯不能正常使用,有时甚至点不着。因此,对长期不用的空心阴极灯,一般每3个月左右应该通电点燃2小时以上,这样做的目的一是可以除湿,保障灯的性能;二是可以延长灯的寿命。

5、注意对灯的激活

空心阴极灯使用一段时间后,灯的性能会变差,有时会产生老化,有时会产生发光不稳定、光强度减弱、噪声增大等现象。这时,如果不采取适当的措施,就会严重影响使用质量。碰到这种情况,可以采取把灯的极性反接,或者用激活器激活,在最大电流下(不能超过额定电流),点燃30分钟左右。因为这样处理,可以提髙灯的吸气剂的活性,吸掉杂质气体。大多数情况下,这样处理后,原子吸收分光光度计空心阴极灯的性能可以恢复。

5. 红外分光分光度计

有机物的特征官能团,分子结构和化学组成。

红外光谱仪通常由光源,单色器,探测器和计算机处理信息系统组成。根据分光装置的不同,分为色散型和干涉型。对色散型双光路光学零位平衡红外分光光度计而言,当样品吸收了一定频率的红外辐射后,分子的振动能级发生跃迁,透过的光束中相应频率的光被减弱,造成参比光路与样品光路相应辐射的强度差,从而得到所测样品的红外光谱。

6. 近红外分光光度计能进行波长扫描吗

红外分光光度法是当物质分子吸收- 记波长的光 能,能引起分子振动和转动能级跃迁,产生的吸收光谱一般在2. 5〜25nm的中红外光区,称为红外分子吸收光谱,简称红外光谱。利用红外光谱对 物质进行定性分析或定量测定的方法称红外分光光度法。由于物质分子发生振动和转动能级跃迁所需的能量较低,几乎所有的有机 化合物在红外光区均有吸收。

分子中不同官能团,在发生振动和转动能级跃迁时所需的 能量各不相同,产生的吸收谱带其波长位置就成为鉴定分子中官能团特征的依据,其吸 收强度则是定量检测的依据。红外分光光度 法可用于分子结构的基础研究(测定分子键 长、键角、推断分子的立体构型等),以及化学组成的分析(化合物的定性定量分析), 应用最广泛的是对未知毒物的结构分析、纯 度鉴定。

缺点是灵敏度低,不宜进行微量成 分定量测定,而1L要求样品必须纯化。

后来 发展起来的傅立叶红外光谱法克服了灵敏度 低的不足,可测定l(T9g的微量样品。

7. 近红外分光光度计光源

分光光度法

分光光度法是通过测定被测物质在特定波长处或一定波长范围内光的吸光度或发光强度,对该物质进行定性和定量分析的方法。在分光光度计中,将不同波长的光连续地照射到一定浓度的样品溶液时,便可得到与不同波长相对应的吸收强度。如以波长(λ)为横坐标,吸收强度(A)为纵坐标,就可绘出该物质的吸收光谱曲线。利用该曲线进行物质定性、定量的分析方法,称为分光光度法,也称为吸收光谱法。用紫外光源测定无色物质的方法,称为紫外分光光度法;用可见光光源测定有色物质的方法,称为可见光光度法。它们与比色法一样,都以Lambert-Beer定律为基础。上述的紫外光区与可见光区是常用的。但分光光度法的应用光区包括紫外光区,可见光区,红外光区。紫外分光光度计,可见分光光度计(或比色计)、红外分光光度计或原子吸收分光光度计。为保证测量的精密度和准确度,所有仪器应按照国家计量检定规程或本附录规定,定期进行校正检定。

波长范围

(1)200~400nm的紫外光区,(2)400~760nm的可见光区, (3)2.5~25μm(按波数计为4000cm<-1>~400cm<-1>)的红外光区。

检测仪器

紫外分光光度计,可见分光光度计(或比色计)、红外分光光度计或原子吸收分光光度计。为保证测量的精密度和准确度,所有仪器应按照国家计量检定规程或本附录规定,定期进行校正检定。

基本原理

分光光度法

当一束强度为I0的单色光垂直照射某物质的溶液后,由于一部分光被体系吸收,因此透射光的强度降至I,则溶液的透光率T为:

根据朗伯(Lambert)-比尔(Beer)定律:

A=abc

式中A为吸光度,b为溶液层厚度(cm),c为溶液的浓度(g/dm^3), a为吸光系数。其中吸光系数 与溶液的本性、温度以及波长等因素有关。溶液中其他组分(如溶剂等)对光的吸收可用空白液扣除。

由上式可知,当固定溶液层厚度l和吸光系数a时,吸光度A与溶液的浓度成线性关系。在定量分析时,首先需要测定溶液对不同波长光的吸收情况(吸收光谱),从中确定最大吸收波长 ,然后以此波长 的光为光源,测定一系列已知浓度c溶液的吸光度A,作出A~c工作曲线。在分析未知溶液时,根据测量的吸光度A,查工作曲线即可确定出相应的浓度。这便是分光光度法测量浓度的基本原理。

8. 近红外分光光度计与近红外光谱仪

近红外光谱(NIR)是介于可见光(VIS)和中红外光(MIR)之间的电磁波谱,波数约为:10000~4000cm-1。近红外光谱法是利用含有氢基团(X-H,X为:C,O,N,S等)化学键(X-H)伸缩振动倍频和合频,在近红外区的吸收光谱,通过选择适当的化学计量学多元校正方法,把校正样品的近红外吸收光谱与其成分浓度或性质数据进行关联,建立校正样品吸收光谱与其成分浓度或性质之间的关系-校正模型。在进行未知样品预测时,应用已建好的校正模型和未知样品的吸收光谱,就可定量预测其成分浓度或性质。另外,通过选择合适的化学计量学模式识别方法,也可分离提取样本的近红外吸收光谱特征信息,并建立相应的类模型。在进行未知样品的分类时,应用已建立的类模型和未知样品的吸收光谱,便可定性判别未知样品的归属。

具体而言,近红外光谱的分析技术与其他常规分析技术不同。现代近红外光谱是一种间接分析技术,是通过校正模型的建立实现对未知样本的定性或定量分析。图1给出了近红外光谱分析模型建立及应用的框图,其分析方法的建立主要通过以下几个步骤完成。选择有代表性的校正集样本并测量其近红外光谱;采用标准或认可的参考方法测定所关心的组成或性质数据;根据测量的光谱和基础数据通过合理的化学计量学方法建立校正模型,在光谱与基础数据关联前,为减轻以至于消除各种因素对光谱的干扰,需要采用合适的方法对光谱进行预处理;未知样本组成性质的测定,在对未知样本测定时,根据测定的光谱和校正模型适用性判据,要确定建立的校正模型是否适合对未知样本进行测定,如适合,则测定的结果符合模型允许的误差要求,否则只能提供参考性数据。

9. 近红外分光光度计 波长标定

光谱范围

包括波长范围为400~760 nm的可见光区和波长范围为200~400 nm的紫外光区。不同的光源都有其特有的发射光谱,因此可采用不同的发光体作为仪器的光源。

钨灯的发射光谱:钨灯光源所发出的400~760nm波长的光谱光通过三棱镜折射后,可得到由红橙,黄绿,蓝靛,紫组成的连续色谱;该色谱可作为可见光分光光度计的光源。

氢灯(或氘灯)的发射光谱:氢灯能发出185~400 nm波长的光谱可作为紫外光光度计的光源。